Suppr超能文献

人工神经网络学习改良 Ashworth 量表中痉挛的临床评估。

Artificial Neural Network Learns Clinical Assessment of Spasticity in Modified Ashworth Scale.

机构信息

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.

Division of Health Administration and Healthcare, Cheongju University, Cheongju, Korea.

出版信息

Arch Phys Med Rehabil. 2019 Oct;100(10):1907-1915. doi: 10.1016/j.apmr.2019.03.016. Epub 2019 Apr 19.

Abstract

OBJECTIVE

To propose an artificial intelligence (AI)-based decision-making rule in modified Ashworth scale (MAS) that draws maximum agreement from multiple human raters and to analyze how various biomechanical parameters affect scores in MAS.

DESIGN

Prospective observational study.

SETTING

Two university hospitals.

PARTICIPANTS

Hemiplegic adults with elbow flexor spasticity due to acquired brain injury (N=34).

INTERVENTION

Not applicable.

MAIN OUTCOME MEASURES

Twenty-eight rehabilitation doctors and occupational therapists examined MAS of elbow flexors in 34 subjects with hemiplegia due to acquired brain injury while the MAS score and biomechanical data (ie, joint motion and resistance) were collected. Nine biomechanical parameters that quantify spastic response described by the joint motion and resistance were calculated. An AI algorithm (or artificial neural network) was trained to predict the MAS score from the parameters. Afterwards, the contribution of each parameter for determining MAS scores was analyzed.

RESULTS

The trained AI agreed with the human raters for the majority (82.2%, Cohen's kappa=0.743) of data. The MAS scores chosen by the AI and human raters showed a strong correlation (correlation coefficient=0.825). Each biomechanical parameter contributed differently to the different MAS scores. Overall, angle of catch, maximum stretching speed, and maximum resistance were the most relevant parameters that affected the AI decision.

CONCLUSIONS

AI can successfully learn clinical assessment of spasticity with good agreement with multiple human raters. In addition, we could analyze which factors of spastic response are considered important by the human raters in assessing spasticity by observing how AI learns the expert decision. It should be noted that few data were collected for MAS3; the results and analysis related to MAS3 therefore have limited supporting evidence.

摘要

目的

提出改良 Ashworth 量表(MAS)中基于人工智能(AI)的决策规则,该规则可从多位人类评估者中获得最大共识,并分析各种生物力学参数如何影响 MAS 评分。

设计

前瞻性观察研究。

地点

两所大学医院。

参与者

因获得性脑损伤而导致偏瘫的肘部屈肌痉挛的成年患者(N=34)。

干预措施

不适用。

主要观察指标

28 位康复科医生和职业治疗师对 34 名因获得性脑损伤而偏瘫的患者的 MAS 进行了检查,同时收集 MAS 评分和生物力学数据(即关节运动和阻力)。计算了 9 个量化关节运动和阻力描述的痉挛反应的生物力学参数。一个 AI 算法(或人工神经网络)被训练以从参数预测 MAS 评分。然后,分析每个参数对确定 MAS 评分的贡献。

结果

经过训练的 AI 在大多数(82.2%,Cohen's kappa=0.743)数据中与人类评估者达成一致。AI 和人类评估者选择的 MAS 评分之间存在很强的相关性(相关系数=0.825)。每个生物力学参数对不同的 MAS 评分有不同的贡献。总体而言,捕获角度、最大拉伸速度和最大阻力是影响 AI 决策的最重要的参数。

结论

AI 可以成功地学习痉挛的临床评估,并与多位人类评估者达成良好的一致。此外,我们可以通过观察 AI 如何学习专家决策,分析人类评估者在评估痉挛时认为哪些痉挛反应因素重要。需要注意的是,MAS3 仅收集了少量数据,因此与 MAS3 相关的结果和分析证据有限。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验