Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia.
Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia
J Pharmacol Exp Ther. 2019 Jul;370(1):25-34. doi: 10.1124/jpet.118.255984. Epub 2019 Apr 22.
Disease relapse in B-cell acute lymphoblastic leukemia (ALL), either due to development of acquired resistance after therapy or because of de novo resistance, remains a therapeutic challenge. In the present study, we have developed a cytarabine (Ara-C)-resistant REH cell line (REH/Ara-C) as a chemoresistance model. REH/Ara-C 1) was not crossresistant to vincristine or methotrexate; 2) showed a similar proliferation rate and cell surface marker expression as parental REH; 3) demonstrated decreased chemotaxis toward bone marrow stromal cells; and 4) expressed higher transcript levels of cytidine deaminase () and mitoNEET () than the parental REH cell line. Based on these findings, we tested NL-1, a mitoNEET inhibitor, which induced a concentration-dependent decrease in cell viability with a comparable IC value in REH and REH/Ara-C. Furthermore, NL-1 decreased cell viability in six different ALL cell lines and showed inhibitory activity in a hemosphere assay. NL-1 also impaired the migratory ability of leukemic cells, irrespective of the chemoattractant used, in a chemotaxis assay. More importantly, NL-1 showed specific activity in inducing death in a drug-resistant population of leukemic cells within a coculture model that mimicked the acquired resistance and de novo resistance observed in the bone marrow of relapsed patients. Subsequent studies indicated that NL-1 mediates autophagy, and inhibition of autophagy partially decreased NL-1-induced tumor cell death. Finally, NL-1 showed antileukemic activity in an in vivo mouse ALL model. Taken together, our study demonstrates that mitoNEET has potential as a novel antileukemic drug target in treatment refractory or relapsed ALL.
B 细胞急性淋巴细胞白血病(ALL)的疾病复发,无论是由于治疗后获得性耐药的发展还是由于新出现的耐药性,仍然是一个治疗挑战。在本研究中,我们开发了一种阿糖胞苷(Ara-C)耐药 REH 细胞系(REH/Ara-C)作为化学抗性模型。REH/Ara-C 1)对长春新碱或甲氨蝶呤没有交叉耐药性;2)表现出与亲本 REH 相似的增殖率和细胞表面标志物表达;3)表现出对骨髓基质细胞的趋化性降低;4)表达的胞苷脱氨酶()和 mitoNEET()转录本水平高于亲本 REH 细胞系。基于这些发现,我们测试了 mitoNEET 抑制剂 NL-1,它以浓度依赖的方式降低细胞活力,在 REH 和 REH/Ara-C 中的 IC 值相当。此外,NL-1 在六种不同的 ALL 细胞系中降低细胞活力,并在半球体测定中显示出抑制活性。NL-1 还在趋化性测定中损害白血病细胞的迁移能力,无论使用的趋化剂如何。更重要的是,NL-1 在模仿复发患者骨髓中观察到的获得性耐药和新出现的耐药性的共培养模型中,对耐药性白血病细胞群体具有特异性的活性,从而诱导其死亡。随后的研究表明,NL-1 介导自噬,并且自噬的抑制部分降低了 NL-1 诱导的肿瘤细胞死亡。最后,NL-1 在体内小鼠 ALL 模型中显示出抗白血病活性。总之,我们的研究表明,mitoNEET 有可能成为治疗难治性或复发 ALL 的新型抗白血病药物靶点。