NHLBI Light Microscopy Facility, National Institutes of Health, Bethesda, Maryland, U.S.A.
NICHD Division of Basic and Translational Biophysics, National Institutes of Health, Bethesda, Maryland, U.S.A.
J Microsc. 2019 Jun;274(3):168-176. doi: 10.1111/jmi.12795. Epub 2019 May 9.
Here we show an easy method for determining an effective dye saturation factor ('P ') for STED (Stimulated Emission Depletion) microscopy. We define P to be a combined microscope system plus dye factor (analogous to the traditional ground truth I measurement, which is microscope independent) that is functionally defined as the power in the depletion beam that provides a resolution enhancement of 41% compared to confocal, according to the modified Abbe's formula for STED resolution enhancement. We show that the determination of P provides insight not only into the suitability of a particular dye and the best imaging parameters to be used for an experiment, but also sets the critical value for correctly determining the point spread function (PSF) used in deconvolution of STED images. P can be a function of many experimental variables, both microscope and sample related. Here we show the utility of doing P determinations by (1) exploiting the simple relationship between width and a threshold-defined area provided by a Gaussian PSF, for either linear or spherical objects and (2) linearising the normally inverse hyperbolic function of resolution versus power that can determine P . We show that this rearrangement allows us to determine P using only a few measurements: either at a few relatively low depletion powers, on traditional bead size measurements or by finding the total area of a naturally occurring sub-limit sized biological feature (in this case, microtubules). We show the derivation of these equations and methods and the utility of its use by characterising several dyes and a local imaging parameter relevant to STED microscopy. This information is used to predict the enhancement of resolution of the point spread function necessary for post-processing deconvolution. LAY DESCRIPTION: Stimulated Emission Depletion (STED) microscopy is a fluorescence imaging superresolution technique that achieves tens of nanometres resolution. This is done by utilising a depletion laser to effectively quench (deplete) fluorescence in a donut shape overlapping the normally excited fluorescence spot. The size of the remaining (undepleted) central fluorescence spot is power dependent allowing 'tunable' resolution with the power of the STED depletion laser. This depletion power versus resolution relationship is dye and instrument dependent. We have developed a method for quickly measuring this relationship to optimise experiments based on individual dyes and microscope specific parameters. This allows for quickly optimising microscope settings and for correctly postprocessing images.
这里我们展示了一种用于确定受激发射耗尽(STED)显微镜有效染料饱和因子('P')的简单方法。我们将 P 定义为显微镜系统加染料因子的组合(类似于传统的地面真实 I 测量,这与显微镜无关),根据改进的用于 STED 分辨率增强的阿贝公式,它在功能上被定义为提供比共聚焦高 41%的分辨率增强的耗尽光束中的功率。我们表明,P 的确定不仅提供了对特定染料和最佳成像参数的适用性的深入了解,以便进行实验,而且还为正确确定用于 STED 图像反卷积的点扩散函数(PSF)设定了临界值。P 可以是许多实验变量的函数,包括显微镜和样本相关的变量。在这里,我们通过以下两种方法展示了进行 P 确定的实用性:(1)利用高斯 PSF 的宽度和阈值定义的面积之间的简单关系,适用于线性或球形物体,(2)线性化分辨率与功率的正常双曲反函数,该函数可以确定 P。我们表明,这种重排允许我们仅使用几个测量值来确定 P:要么在几个相对较低的耗尽功率下,要么在传统的珠子尺寸测量中,要么通过找到自然存在的亚极限大小生物特征的总面积(在这种情况下,微管)。我们展示了这些方程和方法的推导以及其使用的实用性,通过对几种染料和与 STED 显微镜相关的局部成像参数进行特征描述。该信息用于预测后处理反卷积所需的 PSF 分辨率增强。
受激发射耗尽(STED)显微镜是一种荧光成像超分辨率技术,可实现几十纳米的分辨率。这是通过利用耗尽激光有效地在与正常激发荧光点重叠的环形中淬灭(耗尽)荧光来实现的。剩余(未耗尽)中央荧光点的大小与功率有关,允许通过 STED 耗尽激光的功率实现“可调谐”分辨率。这种耗尽功率与分辨率的关系取决于染料和仪器。我们已经开发了一种快速测量这种关系的方法,以便根据单个染料和显微镜特定参数优化实验。这允许快速优化显微镜设置和正确处理图像。