Suppr超能文献

受激发射损耗荧光纳米显微镜在揭示生物系统纳米级结构和动力学方面的应用。

Applications of STED fluorescence nanoscopy in unravelling nanoscale structure and dynamics of biological systems.

作者信息

Roobala C, Ilanila I P, Basu J K

机构信息

Department of Physics, Indian Institute of Science, Bengaluru 560 012, India.

出版信息

J Biosci. 2018 Jul;43(3):471-484.

Abstract

Fluorescence microscopy, especially confocal microscopy, has revolutionized the field of biological imaging. Breaking the optical diffraction barrier of conventional light microscopy, through the advent of super-resolution microscopy, has ushered in the potential for a second revolution through unprecedented insight into nanoscale structure and dynamics in biological systems. Stimulated emission depletion (STED) microscopy is one such super-resolution microscopy technique which provides real-time enhanced-resolution imaging capabilities. In addition, it can be easily integrated with well-established fluorescence-based techniques such as fluorescence correlation spectroscopy (FCS) in order to capture the structure of cellular membranes at the nanoscale with high temporal resolution. In this review, we discuss the theory of STED and different modalities of operation in order to achieve the best resolution. Various applications of this technique in cell imaging, especially that of neuronal cell imaging, are discussed as well as examples of application of STED imaging in unravelling structure formation on biological membranes. Finally, we have discussed examples from some of our recent studies on nanoscale structure and dynamics of lipids in model membranes, due to interaction with proteins, as revealed by combination of STED and FCS techniques.

摘要

荧光显微镜,尤其是共聚焦显微镜,已经彻底改变了生物成像领域。通过超分辨率显微镜的出现,突破了传统光学显微镜的光学衍射极限,为深入了解生物系统中的纳米级结构和动力学带来了前所未有的洞察力,从而引发了第二次革命的潜力。受激发射损耗(STED)显微镜就是这样一种超分辨率显微镜技术,它提供实时增强分辨率成像能力。此外,它可以很容易地与成熟的基于荧光的技术(如荧光相关光谱法(FCS))相结合,以便以高时间分辨率在纳米尺度上捕捉细胞膜的结构。在这篇综述中,我们讨论了STED的理论和不同的操作模式,以实现最佳分辨率。还讨论了该技术在细胞成像中的各种应用,特别是神经元细胞成像,以及STED成像在揭示生物膜上结构形成方面的应用实例。最后,我们讨论了一些我们最近的研究实例,这些研究通过STED和FCS技术的结合,揭示了模型膜中由于与蛋白质相互作用而导致的脂质纳米级结构和动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验