Suppr超能文献

使用Cer-SiR对高尔基体动力学进行受激发射损耗成像:一种用于活细胞的双组分、光稳定、高密度脂质探针。

STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells.

作者信息

Erdmann Roman S, Toomre Derek, Schepartz Alanna

机构信息

Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA.

Department of Chemistry, Yale University, New Haven, CT, 06520, USA.

出版信息

Methods Mol Biol. 2017;1663:65-78. doi: 10.1007/978-1-4939-7265-4_6.

Abstract

Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

摘要

对活细胞进行长时间延时超分辨率成像需要一种标记策略,该策略将明亮、光稳定的荧光团与高密度定位探针相结合。脂质是理想的高密度定位探针,因为它们的丰度比大多数膜结合蛋白高100倍以上,同时还能界定细胞器的边界。在这里,我们描述了Cer-SiR,一种双组分、高密度脂质探针,其光稳定性极佳。Cer-SiR通过两种组分的生物正交反应在细胞中生成:一种用反式环辛烯标记的神经酰胺脂质(Cer-TCO)和一种具有反应性、光稳定的硅罗丹明染料(SiR-Tz)。这些组分在活细胞的高尔基体中组装形成Cer-SiR。Cer-SiR对细胞功能无害,以高密度定位于高尔基体,并且具有足够的光稳定性,能够通过三维共聚焦或长时间延时受激发射损耗显微镜观察高尔基体的结构和动态。

相似文献

2
Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe.
Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10242-6. doi: 10.1002/anie.201403349. Epub 2014 Jul 31.
3
Long-Term Live-Cell STED Nanoscopy of Primary and Cultured Cells with the Plasma Membrane HIDE Probe DiI-SiR.
Angew Chem Int Ed Engl. 2017 Aug 21;56(35):10408-10412. doi: 10.1002/anie.201704783. Epub 2017 Jul 24.
5
Green-Emitting Rhodamine Dyes for Vital Labeling of Cell Organelles Using STED Super-Resolution Microscopy.
Chembiochem. 2019 Sep 2;20(17):2248-2254. doi: 10.1002/cbic.201900177. Epub 2019 May 21.
7
A new organic molecular probe as a powerful tool for fluorescence imaging and biological study of lipid droplets.
Theranostics. 2023 Jan 1;13(1):95-105. doi: 10.7150/thno.79052. eCollection 2023.
8
10
Long time-lapse nanoscopy with spontaneously blinking membrane probes.
Nat Biotechnol. 2017 Aug;35(8):773-780. doi: 10.1038/nbt.3876. Epub 2017 Jul 3.

引用本文的文献

1
Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging.
Angew Chem Weinheim Bergstr Ger. 2023 Jan 23;135(4):e202216231. doi: 10.1002/ange.202216231. Epub 2022 Dec 14.
2
Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging.
Angew Chem Int Ed Engl. 2023 Jan 23;62(4):e202216231. doi: 10.1002/anie.202216231. Epub 2022 Dec 14.
4
Sample Preparation for Multicolor STED Microscopy.
Methods Mol Biol. 2022;2440:253-270. doi: 10.1007/978-1-0716-2051-9_15.
5
Imaging organelle membranes in live cells at the nanoscale with lipid-based fluorescent probes.
Curr Opin Chem Biol. 2021 Dec;65:154-162. doi: 10.1016/j.cbpa.2021.09.003. Epub 2021 Oct 27.
6
Lipid-dependent coupling of secretory cargo sorting and trafficking at the trans-Golgi network.
FEBS Lett. 2019 Sep;593(17):2412-2427. doi: 10.1002/1873-3468.13552. Epub 2019 Jul 30.
8
Greasing the Wheels of Lipid Biology with Chemical Tools.
Trends Biochem Sci. 2018 Dec;43(12):970-983. doi: 10.1016/j.tibs.2018.09.011. Epub 2018 Oct 26.

本文引用的文献

1
A novel physiological role for ARF1 in the formation of bidirectional tubules from the Golgi.
Mol Biol Cell. 2017 Jun 15;28(12):1676-1687. doi: 10.1091/mbc.E16-12-0863. Epub 2017 Apr 20.
2
Two-colour live-cell nanoscale imaging of intracellular targets.
Nat Commun. 2016 Mar 4;7:10778. doi: 10.1038/ncomms10778.
3
A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy.
Microscopy (Oxf). 2015 Aug;64(4):263-77. doi: 10.1093/jmicro/dfv037. Epub 2015 Jul 6.
4
Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins.
J Am Chem Soc. 2015 Apr 15;137(14):4602-5. doi: 10.1021/ja512838z. Epub 2015 Apr 1.
5
Super-resolution imaging for cell biologists: concepts, applications, current challenges and developments.
Bioessays. 2015 Apr;37(4):436-51. doi: 10.1002/bies.201400170. Epub 2015 Jan 12.
6
Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe.
Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10242-6. doi: 10.1002/anie.201403349. Epub 2014 Jul 31.
7
Twinkle, twinkle little star: photoswitchable fluorophores for super-resolution imaging.
FEBS Lett. 2014 Oct 1;588(19):3603-12. doi: 10.1016/j.febslet.2014.06.043. Epub 2014 Jul 7.
8
Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy.
Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2245-9. doi: 10.1002/anie.201309847. Epub 2014 Jan 28.
9
BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes.
Angew Chem Int Ed Engl. 2013 Jul 1;52(27):6917-20. doi: 10.1002/anie.201301100. Epub 2013 May 27.
10
A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins.
Nat Chem. 2013 Feb;5(2):132-9. doi: 10.1038/nchem.1546. Epub 2013 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验