Varma Vijay, Gerosa Davide, Stein Leo C, Hébert François, Zhang Hao
TAPIR 350-17, California Institute of Technology, 1200 E California Boulevard, Pasadena, California 91125, USA.
Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677, USA.
Phys Rev Lett. 2019 Jan 11;122(1):011101. doi: 10.1103/PhysRevLett.122.011101.
We present accurate fits for the remnant properties of generically precessing binary black holes, trained on large banks of numerical-relativity simulations. We use Gaussian process regression to interpolate the remnant mass, spin, and recoil velocity in the seven-dimensional parameter space of precessing black-hole binaries with mass ratios q≤2, and spin magnitudes χ_{1}, χ_{2}≤0.8. For precessing systems, our errors in estimating the remnant mass, spin magnitude, and kick magnitude are lower than those of existing fitting formulae by at least an order of magnitude (improvement is also reported in the extrapolated region at high mass ratios and spins). In addition, we also model the remnant spin and kick directions. Being trained directly on precessing simulations, our fits are free from ambiguities regarding the initial frequency at which precessing quantities are defined. We also construct a model for remnant properties of aligned-spin systems with mass ratios q≤8, and spin magnitudes χ_{1}, χ_{2}≤0.8. As a byproduct, we also provide error estimates for all fitted quantities, which can be consistently incorporated into current and future gravitational-wave parameter-estimation analyses. Our model(s) are made publicly available through a fast and easy-to-use Python module called surfinBH.
我们给出了一般进动双黑洞遗迹属性的精确拟合,这些拟合是在大量数值相对论模拟数据集上训练得到的。我们使用高斯过程回归在质量比(q\leq2)且自旋大小(\chi_{1},\chi_{2}\leq0.8)的进动黑洞双星七维参数空间中对遗迹质量、自旋和反冲速度进行插值。对于进动系统,我们在估计遗迹质量、自旋大小和反冲大小方面的误差比现有拟合公式低至少一个数量级(在高质量比和高自旋的外推区域也有改进)。此外,我们还对遗迹自旋和反冲方向进行了建模。由于直接在进动模拟上进行训练,我们的拟合在定义进动量的初始频率方面没有歧义。我们还构建了质量比(q\leq8)且自旋大小(\chi_{1},\chi_{2}\leq0.8)的同向自旋系统遗迹属性模型。作为副产品,我们还为所有拟合量提供了误差估计,这些估计可以一致地纳入当前和未来的引力波参数估计分析中。我们的模型通过一个名为surfinBH的快速且易于使用的Python模块公开提供。