Optimisation and Logistics, The University of Adelaide, Adelaide, SA 5005, Australia
School of Computer Science and Engineering, Central South University, Changsha 410083, China
Evol Comput. 2019 Winter;27(4):559-575. doi: 10.1162/evco_a_00255. Epub 2019 Apr 23.
Evolutionary multiobjective optimization for the classical vertex cover problem has been analysed in Kratsch and Neumann (2013) in the context of parameterized complexity analysis. This article extends the analysis to the weighted vertex cover problem in which integer weights are assigned to the vertices and the goal is to find a vertex cover of minimum weight. Using an alternative mutation operator introduced in Kratsch and Neumann (2013), we provide a fixed parameter evolutionary algorithm with respect to , the cost of an optimal solution for the problem. Moreover, we present a multiobjective evolutionary algorithm with standard mutation operator that keeps the population size in a polynomial order by means of a proper diversity mechanism, and therefore, manages to find a 2-approximation in expected polynomial time. We also introduce a population-based evolutionary algorithm which finds a -approximation in expected time .
在参数化复杂性分析的背景下,Kratsch 和 Neumann(2013)分析了经典顶点覆盖问题的进化多目标优化。本文将分析扩展到加权顶点覆盖问题,其中为顶点分配整数权重,目标是找到权重最小的顶点覆盖。使用 Kratsch 和 Neumann(2013)中引入的替代变异算子,我们提供了一个针对问题的最优解成本 的固定参数进化算法 。此外,我们提出了一种使用标准变异算子的多目标进化算法,通过适当的多样性机制将种群规模保持在多项式级,从而能够在预期的多项式时间内找到 2-近似解。我们还引入了一种基于种群的进化算法,该算法可以在预期时间内找到 -近似解。