Center for Membrane Separation and Water Science & Technology, Ocean College , Zhejiang University of Technology , Hangzhou 310014 , China.
Department of Chemical Engineering and Safety , Binzhou University , Binzhou 256600 , China.
ACS Appl Mater Interfaces. 2019 May 15;11(19):17730-17741. doi: 10.1021/acsami.8b21031. Epub 2019 May 2.
Surface modification has been proven to be an effective approach for ion exchange membranes to achieve separation of counterions with different valences by altering interfacial construction of membranes to improve ion transfer performance. In this work, we have fabricated a series of novel cation exchange membranes (CEMs) by modifying sulfonated polysulfone (SPSF) membranes via codeposition of mussel-inspired dopamine (DA) and 4'-aminobenzo-15-crown-5 (ACE), followed by glutaraldehyde cross-linking, aiming at achieving selective separation of specific cations. The as-prepared membranes before and after modification were systematically characterized in terms of their structural, physicochemical, electrochemical, and electrodialytic properties. In the electrodialysis process, the modified membranes exhibit distinct perm selectivity to K ions in binary (K/Li, K/Na, K/Mg) and ternary (K/Li/Mg) systems. In particular, at a constant current density of 5.0 mA·cm, modified membrane M-co-0.50 shows significantly prominent perm selectivity [Formula: see text] in the K/Mg system and M-co-0.75 exhibits remarkable performance in the K/Li system [Formula: see text], superior to commercial monovalent-selective CEM (CIMS, [Formula: see text], [Formula: see text]). Besides, in the K/Li/Mg ternary system, K flux reaches 30.8 nmol·cm·s for M-co-0.50, while it reaches 25.8 nmol·cm·s for CIMS. It possibly arises from the effects of pore-size sieving and the synergistic action of electric field driving and host-guest molecular recognition of ACE and K ions. This study can provide new insights into the separation of specific alkali metal ions, especially on reducing influence of coexisting cations K and Na on Li ion recovery from salt lake and seawater.
表面改性已被证明是一种有效的方法,通过改变膜的界面结构来改善离子传递性能,从而实现不同价态离子的交换膜分离。在这项工作中,我们通过共沉积贻贝启发的多巴胺(DA)和 4'-氨基苯并-15-冠-5(ACE)来修饰磺化聚砜(SPSF)膜,随后进行戊二醛交联,制备了一系列新型阳离子交换膜(CEM),旨在实现特定阳离子的选择性分离。对改性前后的膜进行了系统的结构、物理化学、电化学和电渗析性能表征。在电渗析过程中,改性膜在二元(K/Li、K/Na、K/Mg)和三元(K/Li/Mg)体系中对 K 离子表现出明显的选择渗透性。特别是在恒定电流密度为 5.0 mA·cm 时,改性膜 M-co-0.50 在 K/Mg 体系中表现出显著的选择渗透性[公式:见文本],M-co-0.75 在 K/Li 体系中表现出优异的性能[公式:见文本],优于商业单价选择性 CEM(CIMS,[公式:见文本],[公式:见文本])。此外,在 K/Li/Mg 三元体系中,M-co-0.50 的 K 通量达到 30.8 nmol·cm·s,而 CIMS 的 K 通量达到 25.8 nmol·cm·s。这可能是由于孔径筛分和 ACE 与 K 离子的电场驱动和主客体分子识别协同作用的影响。这项研究为特定碱金属离子的分离提供了新的见解,特别是在减少共存阳离子 K 和 Na 对盐湖和海水提锂的影响方面。