Qian Hao, Xu Geting, Yang Shanshan, Ang Edison Huixiang, Chen Quan, Lin Chenfei, Liao Junbin, Shen Jiangnan
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
Shijiazhuang Key Laboratory of Low Carbon Energy Materials, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China.
ACS Appl Mater Interfaces. 2024 Apr 10;16(14):18019-18029. doi: 10.1021/acsami.4c00991. Epub 2024 Mar 28.
With the continuous advancement of electrodialysis (ED) technology, there arises a demand for improved monovalent cation exchange membranes (CEMs). However, limitations in membrane materials and structures have resulted in the low selectivity of monovalent CEMs, posing challenges in the separation of Li and Mg. In this investigation, a designed CEM with a swelling-embedded structure was created by integrating a polyelectrolyte containing N-oxide Zwitterion into a sulfonated poly(ether ether ketone) (SPEEK) membrane, leveraging the notable solubility characteristic of SPEEK. The membranes were prepared by using N-oxide zwitterionic polyethylenimine (ZPEI) and 1,3,5-benzenetrlcarbonyl trichloride (TMC). The as-prepared membranes underwent systematic characterization and testing, evaluating their structural, physicochemical, electrochemical, and selective ED properties. During ED, the modified membranes demonstrated notable permeability selectivity for Li ions in binary (Li/Mg) systems. Notably, at a constant current density of 2.5 mA cm, the modified membrane PEI-TMC/SPEEK exhibited significant permeability selectivity in the Li/Mg system, while ZPEI-TMC/SPEEK outperformed, displaying remarkable permeability selectivity in the Li/Mg system, surpassing commercial monovalent cation-selective membrane commercial monovalent cation-selective membrane (CIMS). Furthermore, in the Li/Mg binary system, Li flux reached 9.78 × 10 mol cm s for ZPEI-TMC/SPEEK, while its Mg flux only reached 2.7 × 10 mol cm s, showing potential for lithium-magnesium separation. In addition, ZPEI-TMC/SPEEK was tested for performance and stability at high current densities. This work offers a straightforward preparation process and an innovative structural approach, presenting methodological insights for the advancement of lithium and magnesium separation techniques.
随着电渗析(ED)技术的不断进步,对改进的单价阳离子交换膜(CEMs)产生了需求。然而,膜材料和结构的局限性导致单价CEMs的选择性较低,在锂和镁的分离方面带来了挑战。在本研究中,通过将含有N-氧化物两性离子的聚电解质整合到磺化聚(醚醚酮)(SPEEK)膜中,利用SPEEK显著的溶解性特征,制备了一种具有溶胀嵌入结构的设计CEM。这些膜是使用N-氧化物两性离子聚乙烯亚胺(ZPEI)和1,3,5-苯三羰基三氯化物(TMC)制备的。对所制备的膜进行了系统的表征和测试,评估了它们的结构、物理化学、电化学和选择性ED性能。在ED过程中,改性膜在二元(Li/Mg)体系中对锂离子表现出显著的渗透选择性。值得注意的是,在2.5 mA cm的恒定电流密度下,改性膜PEI-TMC/SPEEK在Li/Mg体系中表现出显著的渗透选择性,而ZPEI-TMC/SPEEK表现更优,在Li/Mg体系中显示出显著的渗透选择性,超过了商业单价阳离子选择性膜(CIMS)。此外,在Li/Mg二元体系中,ZPEI-TMC/SPEEK的锂通量达到9.78×10 mol cm s,而其镁通量仅达到2.7×10 mol cm s,显示出锂镁分离的潜力。此外,还测试了ZPEI-TMC/SPEEK在高电流密度下的性能和稳定性。这项工作提供了一种简单的制备工艺和创新的结构方法,为锂镁分离技术的进步提供了方法学见解。