Suppr超能文献

网关网络:一种序列规则挖掘形式。

GatewayNet: a form of sequential rule mining.

机构信息

Department of Computer Science, LSU Shreveport, 1 University Place, Shreveport, 71115, USA.

Department of Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, 1501 Kings Highway, Shreveport, 71103, USA.

出版信息

BMC Med Inform Decis Mak. 2019 Apr 23;19(1):87. doi: 10.1186/s12911-019-0810-3.

Abstract

BACKGROUND

The gateway hypothesis (and particularly the prediction of developmental stages in drug abuse) has been a subject of protracted debate since the 1970s. Extensive research has gone into this subject, but has yielded contradictory findings. We propose an algorithm for detecting both association and causation relationships given a discrete sequence of events, which we believe will be useful in addressing the validity of the gateway hypothesis. To assess the gateway hypothesis, we developed the GatewayNet algorithm, a refinement of sequential rule mining called initiation rule mining. After a brief mathematical definition, we describe how to perform initiation rule mining and how to infer causal relationships from its rules ("gateway rules"). We tested GatewayNet against data for which relationships were known. After constructing a transaction database using a first-order Markov chain, we mined it to produce a gateway network. We then discuss various incarnations of the gateway network. We then evaluated the performance of GatewayNet on urine drug screening data collected from the emergency department at LSU Health Sciences Center in Shreveport. A de-identified database of urine drug screenings ordered by the department between August 1998 and June 2011 was collected and then restricted to patients having at least one screening succeeding their first positive drug screening result.

RESULTS

In the synthetic data, a chain of gateway rules was found in the network which demonstrated causation. We did not find any evidence of gateway rules in the empirical data, but we were able to isolate two documented transitions into benzodiazepine use.

CONCLUSIONS

We conclude that GatewayNet may show promise not only for substance use data, but other data involving sequences of events. We also express future goals for GatewayNet, including optimizing it for speed.

摘要

背景

自 20 世纪 70 年代以来,“门户假说(尤其是药物滥用的发展阶段预测)”一直是一个长期争论的话题。已经对这个主题进行了广泛的研究,但得到的却是相互矛盾的发现。我们提出了一种算法,可以在给定离散事件序列的情况下检测关联和因果关系,我们相信这将有助于解决门户假说的有效性问题。为了评估门户假说,我们开发了 GatewayNet 算法,这是一种称为启动规则挖掘的序列规则挖掘的改进。在简要的数学定义之后,我们描述了如何执行启动规则挖掘以及如何从其规则(“门户规则”)推断因果关系。我们使用一阶马尔可夫链构建交易数据库,然后使用它来生成门户网络。然后,我们讨论了门户网络的各种变体。最后,我们评估了 GatewayNet 在路易斯安那州立大学健康科学中心什里夫波特分校急诊部收集的尿液药物筛查数据上的性能。收集了该部门在 1998 年 8 月至 2011 年 6 月之间订购的尿液药物筛查的去标识数据库,然后将其限制为至少有一次筛查紧随第一次阳性药物筛查结果的患者。

结果

在合成数据中,我们在网络中发现了一条表明因果关系的门户规则链。在经验数据中,我们没有发现任何门户规则的证据,但我们能够隔离出两种有记录的苯二氮䓬类药物使用的转变。

结论

我们的结论是,GatewayNet 不仅可能对物质使用数据有帮助,而且对涉及事件序列的其他数据也有帮助。我们还表达了 GatewayNet 的未来目标,包括对其进行速度优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5e8/6480909/ccdaa2d1636e/12911_2019_810_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验