Suppr超能文献

一种注释关联挖掘方法,用于提取和可视化有趣的临床事件。

An annotated association mining approach for extracting and visualizing interesting clinical events.

机构信息

University of Texas, Arlington, TX, USA.

Central Michigan University, Mount Pleasant, MI, USA.

出版信息

Int J Med Inform. 2021 Apr;148:104366. doi: 10.1016/j.ijmedinf.2020.104366. Epub 2020 Dec 13.

Abstract

OBJECTIVE

This work aims at deriving interesting clinical events using association rule mining based on a user-annotated order of clinical features.

MATERIALS AND METHODS

A user specifies a partial temporal order of features by indexing features of interest, with repeated and bundled indexes allowed as needed. An association mining algorithm plugin was designed to generate rules that adhere to the user-specified temporal order. The plugin uses temporal and sequence constraints to reduce rule permutations early in the rule generation process. The method was evaluated with a large medical claims dataset to generate clinical events.

RESULTS

Using the plug-in algorithm, the database is scanned to calculate the support of item sequences whose sequential order conforms with the user annotated feature order. In our experiments with 20,000 medical claim data records, our method generated rules in a significantly less time than the standalone Apriori algorithm. Our approach generates dendrograms to organize the rules into meaningful hierarchies and provides a graphical interface to navigate the rules and unfold interesting clinical events.

DISCUSSION

Since many associations in healthcare are of sequential nature, some of the derived rules may describe interesting clinical flows or events, while others may be contextually irrelevant. Our method exploits user-specified sequence constraints to eliminate irrelevant rules and reduce rule permutations, speeding up rule mining.

CONCLUSION

This work can be the foundation for future association rule mining studies to extract sequential events based on interestingness. The work can support clinical education where the instructor defines feature sequence constraints, and students unfold and examine extracted sequential rules.

摘要

目的

本工作旨在使用基于用户注释的临床特征顺序的关联规则挖掘来得出有趣的临床事件。

材料与方法

用户通过索引感兴趣的特征来指定特征的部分时间顺序,允许重复和捆绑索引。设计了一个关联挖掘算法插件来生成符合用户指定时间顺序的规则。该插件使用时间和序列约束在规则生成过程的早期减少规则排列。该方法使用大型医疗索赔数据集进行评估以生成临床事件。

结果

使用插件算法,扫描数据库以计算符合用户注释特征顺序的顺序项序列的支持度。在我们对 20,000 条医疗索赔数据记录的实验中,我们的方法生成规则的时间明显少于独立的 Apriori 算法。我们的方法生成树状图将规则组织成有意义的层次结构,并提供图形界面来导航规则和展开有趣的临床事件。

讨论

由于医疗保健中的许多关联具有顺序性质,因此生成的一些规则可能描述了有趣的临床流程或事件,而其他规则可能与上下文无关。我们的方法利用用户指定的序列约束来消除不相关的规则并减少规则排列,从而加快规则挖掘的速度。

结论

这项工作可以为未来基于有趣性提取顺序事件的关联规则挖掘研究奠定基础。这项工作可以为临床教育提供支持,其中教师定义特征序列约束,学生展开和检查提取的顺序规则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验