Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 1Y6, Canada.
Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands.
Nat Commun. 2019 Apr 23;10(1):1904. doi: 10.1038/s41467-019-09738-1.
Galvanic vestibular stimulation (GVS) uses the external application of electrical current to selectively target the vestibular system in humans. Despite its recent popularity for the assessment/treatment of clinical conditions, exactly how this non-invasive tool activates the vestibular system remains an open question. Here we directly investigate single vestibular afferent responses to GVS applied to the mastoid processes of awake-behaving monkeys. Transmastoid GVS produces robust and parallel activation of both canal and otolith afferents. Notably, afferent activation increases with intrinsic neuronal variability resulting in constant GVS-evoked neuronal detection thresholds across all afferents. Additionally, afferent tuning differs for GVS versus natural self-motion stimulation. Using a stochastic model of repetitive activity in afferents, we largely explain the main features of GVS-evoked vestibular afferent dynamics. Taken together, our results reveal the neural substrate underlying transmastoid GVS-evoked perceptual, ocular and postural responses-information that is essential to advance GVS applicability for biomedical uses in humans.
电前庭刺激 (GVS) 使用外部电流来选择性地靶向人类的前庭系统。尽管它最近在评估/治疗临床疾病方面很受欢迎,但这种非侵入性工具如何激活前庭系统仍然是一个悬而未决的问题。在这里,我们直接研究了 GVS 施加于耳廓后的单个前庭传入反应,清醒的猴子在行为过程中。Transmastoid GVS 产生了强大而平行的激活,既包括 canal 传入纤维,也包括 otolith 传入纤维。值得注意的是,传入激活随着内在神经元变异性的增加而增加,导致所有传入纤维的 GVS 诱发神经元检测阈值保持不变。此外,传入的调谐因 GVS 与自然自身运动刺激而有所不同。我们使用一个重复活动的随机模型来解释传入的前庭神经活动,在很大程度上解释了 GVS 诱发的前庭传入神经动力学的主要特征。总的来说,我们的研究结果揭示了经耳后的 GVS 诱发的感知、眼球和姿势反应的神经基础,这些信息对于推进 GVS 在人类生物医学中的应用至关重要。