Suppr超能文献

具有双发色团和快速电荷转移特性的有机聚合物用于可持续光催化。

Organopolymer with dual chromophores and fast charge-transfer properties for sustainable photocatalysis.

作者信息

Smith Justin D, Jamhawi Abdelqader M, Jasinski Jacek B, Gallou Fabrice, Ge Jin, Advincula Rigoberto, Liu Jinjun, Handa Sachin

机构信息

Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY, 40292, USA.

Materials Characterization, Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA.

出版信息

Nat Commun. 2019 Apr 23;10(1):1837. doi: 10.1038/s41467-019-09316-5.

Abstract

Photocatalytic polymers offer an alternative to prevailing organometallics and nanomaterials, and they may benefit from polymer-mediated catalytic and material enhancements. MPC-1, a polymer photoredox catalyst reported herein, exhibits enhanced catalytic activity arising from charge transfer states (CTSs) between its two chromophores. Oligomeric and polymeric MPC-1 preparations both promote efficient hydrodehalogenation of α-halocarbonyl compounds while exhibiting different solubility properties. The polymer is readily recovered by filtration. MPC-1-coated vessels enable batch and flow photocatalysis, even with opaque reaction mixtures, via "backside irradiation." Ultrafast transient absorption spectroscopy indicates a fast charge-transfer process within 20 ps of photoexcitation. Time-resolved photoluminescence measurements reveal an approximate 10 ns lifetime for bright valence states. Ultrafast measurements suggest a long CTS lifetime. Empirical catalytic activities of small-molecule models of MPC-1 subunits support the CTS hypothesis. Density functional theory (DFT) and time-dependent DFT calculations are in good agreement with experimental spectra, spectral peak assignment, and proposed underlying energetics.

摘要

光催化聚合物为现有的有机金属化合物和纳米材料提供了一种替代方案,并且它们可能受益于聚合物介导的催化和材料增强作用。本文报道的聚合物光氧化还原催化剂MPC-1,由于其两个发色团之间的电荷转移态(CTS)而表现出增强的催化活性。低聚和聚合的MPC-1制剂都能促进α-卤代羰基化合物的高效加氢脱卤,同时表现出不同的溶解性。该聚合物可通过过滤轻松回收。涂有MPC-1的容器能够通过“背面照射”实现间歇式和流动光催化,即使对于不透明的反应混合物也是如此。超快瞬态吸收光谱表明,在光激发后20 ps内存在快速电荷转移过程。时间分辨光致发光测量显示明亮价态的寿命约为10 ns。超快测量表明CTS寿命较长。MPC-1亚基小分子模型的经验催化活性支持CTS假说。密度泛函理论(DFT)和含时DFT计算与实验光谱、光谱峰归属以及提出的潜在能量学结果高度一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a063/6478678/84abd896e326/41467_2019_9316_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验