Suppr超能文献

不同突变模型下个体微卫星谱的差异:实证方法。

Dissimilarity of individual microsatellite profiles under different mutation models: Empirical approach.

作者信息

Kosman Evsey, Jokela Jukka

机构信息

Institute for Cereal Crops Improvement Tel Aviv University Tel Aviv Israel.

ETH Zurich, Department of Environmental Systems Science Institute of Integrative Biology (IBZ) Zurich Switzerland.

出版信息

Ecol Evol. 2019 Mar 19;9(7):4038-4054. doi: 10.1002/ece3.5032. eCollection 2019 Apr.

Abstract

Microsatellites (simple sequence repeats, SSRs) still remain popular molecular markers for studying neutral genetic variation. Two alternative models outline how new microsatellite alleles evolve. Infinite alleles model (IAM) assumes that all possible alleles are equally likely to result from a mutation, while stepwise mutation model (SMM) describes microsatellite evolution as stepwise adding or subtracting single repeat units. Genetic relationships between individuals can be analyzed in higher precision when assuming the SMM scenario with allele size differences as a proxy of genetic distance. If population structure is not predetermined in advance, an empirical data analysis usually includes (a) estimating proximity between individual SSR profiles with a selected dissimilarity measure and (b) determining putative genetic structure of a given set of individuals using methods of clustering and/or ordination for the obtained dissimilarity matrix. We developed new dissimilarity indices between SSR profiles of haploid, diploid, or polyploid organisms assuming different mutation models and compared the performance of these indices for determining genetic structure with population data and with simulations. More specifically, we compared SMM with a constant or variable mutation rate at different SSR loci to IAM using data from natural populations of a freshwater bryozoan (diploid), wheat leaf rust (dikaryon), and wheat powdery mildew (monokaryon). We show that inferences about population genetic structure are sensitive to the assumed mutation model. With simulations, we found that Bruvo's distance performs generally poorly, while the new metrics are capturing the differences in the genetic structure of the populations.

摘要

微卫星(简单序列重复,SSRs)仍然是研究中性遗传变异的常用分子标记。有两种替代模型概述了新的微卫星等位基因是如何进化的。无限等位基因模型(IAM)假设所有可能的等位基因由突变产生的可能性相同,而逐步突变模型(SMM)将微卫星进化描述为逐步添加或减去单个重复单元。当假设SMM情景,将等位基因大小差异作为遗传距离的代理时,可以更精确地分析个体之间的遗传关系。如果群体结构没有预先确定,实证数据分析通常包括:(a)使用选定的差异度量估计个体SSR图谱之间的接近度;(b)使用聚类和/或排序方法对获得的差异矩阵确定给定个体集的推定遗传结构。我们针对单倍体、二倍体或多倍体生物的SSR图谱,在假设不同突变模型的情况下开发了新的差异指数,并比较了这些指数在利用群体数据和模拟确定遗传结构方面的性能。更具体地说,我们使用来自淡水苔藓虫(二倍体)、小麦叶锈病(双核体)和小麦白粉病(单核体)自然群体的数据,将不同SSR位点具有恒定或可变突变率的SMM与IAM进行了比较。我们表明,关于群体遗传结构的推断对假设的突变模型很敏感。通过模拟,我们发现布鲁沃距离通常表现不佳,而新的指标能够捕捉群体遗传结构的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82f8/6467862/8ae6a9defee7/ECE3-9-4038-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验