Institut für Organische Chemie , Universität Regensburg , Universitätsstr. 31 , 93053 Regensburg , Germany.
Departamento de Química , Universitat Politècnica de València , Camino de Vera s/n , 46022 Valencia , Spain.
Acc Chem Res. 2019 Jul 16;52(7):1865-1876. doi: 10.1021/acs.accounts.9b00097. Epub 2019 Apr 24.
Nature is intrinsically able to control kinetics, conversion, and selectivity of biochemical processes by means of confined reaction environments such as enzyme pockets, bilayer membranes, micelles, vesicles, cells, or bioorganic frameworks. The main reason for this fact is the optimal molecular alignment and restricted motion of reactant molecules compared to those found in bulk solution. Under this inspiration, a number of synthetic photo-nanoreactors based on supramolecular self-assembled systems have been developed during the last decades, including mesoporous inorganic materials, microemulsions, micelles, vesicles, lipid bilayer foams, polyelectrolyte nanoparticles, etc. In a broader sense, nanoreactor technology constitutes nowadays a promising tool to enhance organic synthesis under sustainable reaction conditions. In general, nanoreactors change the essential properties of the molecules within them, thus affecting their chemical reactivity. Among the nanoreactor-like systems described in the literature to facilitate photochemical processes, the more recent use of viscoelastic supramolecular gels, typically made of low-molecular-weight (LMW) compounds self-assembled through noncovalent interactions, as compartmentalized reaction media is particularly appealing due to the versatility of these materials in terms of fabrication, properties, and processability. Furthermore, the high specific surface areas found in supramolecular gels, their stimuli-responsive reversibility, good diffusion properties enhancing the interactions between reactants and the three-dimensional (3D) porous network, functional tunability, and blocking effect of external oxygen are some of the most important features that can benefit photoinduced processes carried out in confined gel media. Not surprisingly, the efficiency of photochemical processes inside gel media is largely dependent on the type of reaction, characteristics of the gel network, solvent nature, reactant properties, and reaction conditions. Thus, the main focus of this Account is to provide a concise overview of the most relevant examples reported by us and others in order to illustrate the main advantages associated with the emerging use of gel-based materials as nonconventional reaction media to facilitate and control photochemical reactions. In particular, photodimerization, triplet-triplet annihilation upconversion (TTA-UC) coupled to single electron transfer (SET), photooxidation, photoreduction, and trifluoromethylation reactions will be illustrated during the discussion. These examples suggest that gel-based media can provide a versatile platform for the discovery of new reaction pathways and facilitate the way that photochemical reactions are traditionally carried out in academia and industry in terms of reaction conditions and required infrastructure. In addition, the use of physical or chemical gels as reaction systems may also accelerate high-throughput screening of photocatalysts. Overall, a judicious choice of gelators, reactants, solvent, and reaction conditions for the assembly of these gelators is crucial for controlling conversion, kinetics, and selectivity of intragel photoinduced processes.
自然界通过酶口袋、双层膜、胶束、囊泡、细胞或生物有机框架等受限反应环境,能够控制生化过程的动力学、转化率和选择性。这一事实的主要原因是与在体相溶液中发现的反应物分子相比,反应物分子具有最佳的分子排列和受限的运动。受此启发,在过去几十年中,已经开发出了许多基于超分子自组装体系的合成光纳米反应器,包括介孔无机材料、微乳液、胶束、囊泡、脂质双层泡沫、聚电解质纳米粒子等。从更广泛的意义上讲,纳米反应器技术是在可持续反应条件下增强有机合成的一种很有前途的工具。一般来说,纳米反应器改变了其中分子的基本性质,从而影响了它们的化学反应性。在文献中描述的促进光化学反应的纳米反应器样系统中,最近使用粘弹性超分子凝胶作为分隔反应介质特别吸引人,这些凝胶通常由通过非共价相互作用自组装的低分子量 (LMW) 化合物制成。由于这些材料在制造、性质和可加工性方面的多功能性,这些凝胶作为分隔反应介质特别吸引人。此外,超分子凝胶中发现的高比表面积、它们的刺激响应可逆性、增强反应物之间相互作用的良好扩散性质、三维 (3D) 多孔网络、功能可调性以及对外界氧气的阻断效应是可以受益于受限凝胶介质中进行的光诱导过程的一些最重要的特征。毫不奇怪,光化学过程在凝胶介质中的效率在很大程度上取决于反应类型、凝胶网络的特性、溶剂性质、反应物性质和反应条件。因此,本专题重点介绍了我们和其他人报告的最相关示例,以说明与将基于凝胶的材料作为非常规反应介质用于促进和控制光化学反应相关的主要优势。特别是,将讨论光二聚化、三重态-三重态湮灭上转换 (TTA-UC) 与单电子转移 (SET) 偶联、光氧化、光还原和三氟甲基化反应。这些例子表明,基于凝胶的介质可以为发现新的反应途径提供一个多功能平台,并促进光化学在学术界和工业界中传统的反应条件和所需基础设施。此外,使用物理或化学凝胶作为反应系统也可能加速光催化剂的高通量筛选。总体而言,对于组装这些凝胶剂,明智地选择凝胶剂、反应物、溶剂和反应条件对于控制凝胶内光诱导过程的转化率、动力学和选择性至关重要。