Suppr超能文献

用于 Z 型水分解的颗粒光催化剂片:优于粉末悬浮液和光电化学系统的优势及未来挑战。

Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges.

机构信息

Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

出版信息

Faraday Discuss. 2017 Apr 28;197:491-504. doi: 10.1039/c6fd00184j.

Abstract

Water splitting using semiconductor photocatalysts has been attracting growing interest as a means of solar energy based conversion of water to hydrogen, a clean and renewable fuel. Z-scheme photocatalytic water splitting based on the two-step excitation of an oxygen evolution photocatalyst (OEP) and a hydrogen evolution photocatalyst (HEP) is a promising approach toward the utilisation of visible light. In particular, a photocatalyst sheet system consisting of HEP and OEP particles embedded in a conductive layer has been recently proposed as a new means of obtaining efficient and scalable redox mediator-free Z-scheme solar water splitting. In this paper, we discuss the advantages and disadvantages of the photocatalyst sheet approach compared to conventional photocatalyst powder suspension and photoelectrochemical systems through an examination of the water splitting activity of Z-scheme systems based on SrTiO:La,Rh as the HEP and BiVO:Mo as the OEP. This photocatalyst sheet was found to split pure water much more efficiently than the powder suspension and photoelectrochemical systems, because the underlying metal layer efficiently transfers electrons from the OEP to the HEP. The photocatalyst sheet also outperformed a photoelectrochemical parallel cell during pure water splitting. The effects of H/OH concentration overpotentials and of the IR drop are reduced in the case of the photocatalyst sheet compared to photoelectrochemical systems, because the HEP and OEP are situated in close proximity to one another. Therefore, the photocatalyst sheet design is well-suited to efficient large-scale applications. Nevertheless, it is also noted that the photocatalytic activity of these sheets drops markedly with increasing background pressure because of reverse reactions involving molecular oxygen under illumination as well as delays in gas bubble desorption. It is shown that appropriate surface modifications allow the photocatalyst sheet to maintain its water splitting activity at elevated pressure. Accordingly, we conclude that the photocatalyst sheet system is a viable option for the realisation of efficient solar fuel production.

摘要

利用半导体光催化剂进行水分解作为一种利用太阳能将水转化为氢气的方法,引起了越来越多的关注,氢气是一种清洁可再生的燃料。基于两步激发析氧光催化剂 (OEP) 和析氢光催化剂 (HEP) 的 Z 型光催化水分解是利用可见光的一种很有前途的方法。特别是,最近提出了一种由嵌入在导电层中的 HEP 和 OEP 颗粒组成的光催化剂片系统,作为获得高效和可扩展的无氧化还原介体质子 Z 型太阳能水分解的新方法。在本文中,我们通过考察基于 SrTiO:La,Rh 作为 HEP 和 BiVO:Mo 作为 OEP 的 Z 型系统的水分解活性,比较了光催化剂片方法与传统的光催化剂粉末悬浮体和光电化学系统的优缺点。结果表明,与粉末悬浮体和光电化学系统相比,该光催化剂片在分解纯水时效率更高,因为底层金属层能够有效地将电子从 OEP 转移到 HEP。在纯水中分解时,光催化剂片也优于光电化学平行电池。与光电化学系统相比,在光催化剂片的情况下,H+/OH-浓度过电势和 IR 降的影响降低,因为 HEP 和 OEP 彼此靠近。因此,光催化剂片设计非常适合高效的大规模应用。然而,也注意到由于在光照下涉及分子氧的逆反应以及气体气泡解吸的延迟,这些薄片的光催化活性随着背景压力的增加而显著下降。结果表明,适当的表面修饰可以使光催化剂片在升高的压力下保持其水分解活性。因此,我们得出结论,光催化剂片系统是实现高效太阳能燃料生产的可行选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验