Finney Aaron R, Lectez Sébastien, Freeman Colin L, Harding John H, Stackhouse Stephen
Department of Materials Science and Engineering, Sir Robert, Hadfield Building, University of Sheffield, Sheffield, S1 3JD, UK.
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
Chemistry. 2019 Jul 2;25(37):8725-8740. doi: 10.1002/chem.201900945. Epub 2019 May 30.
A better understanding of the solution chemistry of the lanthanide (Ln) salts in water would have wide ranging implications in materials processing, waste management, element tracing, medicine and many more fields. This is particularly true for minerals processing, given governmental concerns about lanthanide security of supply and the drive to identify environmentally sustainable processing routes. Despite much effort, even in simple systems, the mechanisms and thermodynamics of Ln association with small anions remain unclear. In the present study, molecular dynamics (MD), using a newly developed force field, provide new insights into LnCl (aq) solutions. The force field accurately reproduces the structure and dynamics of Nd , Gd and Er in water when compared to calculations using density functional theory (DFT). Adaptive-bias MD simulations show that the mechanisms for ion pairing change from dissociative to associative exchange depending upon cation size. Thermodynamics of association reveal that whereas ion pairing is favourable, the equilibrium distribution of species at low concentration is dominated by weakly bound solvent-shared and solvent-separated ion pairs, rather than contact ion pairs, reconciling a number of contrasting observations of Ln -Cl association in the literature. In addition, we show that the thermodynamic stabilities of a range of inner sphere and outer sphere coordination complexes are comparable and that the kinetics of anion binding to cations may control solution speciation distributions beyond ion pairs. The techniques adopted in this work provide a framework with which to investigate more complex solution chemistries of cations in water.
深入了解镧系(Ln)盐在水中的溶液化学性质,将在材料加工、废物管理、元素追踪、医学及许多其他领域产生广泛影响。对于矿物加工而言尤其如此,因为政府担心镧系元素的供应安全,并致力于寻找环境可持续的加工路线。尽管付出了诸多努力,但即便在简单体系中,镧系元素与小阴离子缔合的机制和热力学仍不明确。在本研究中,利用新开发的力场进行的分子动力学(MD)模拟,为LnCl₃(aq)溶液提供了新的见解。与使用密度泛函理论(DFT)的计算结果相比,该力场能准确再现水中钕、钆和铒的结构与动力学。自适应偏置MD模拟表明,离子配对机制会根据阳离子大小从离解交换转变为缔合交换。缔合热力学表明,虽然离子配对是有利的,但低浓度下物种的平衡分布主要由弱结合的溶剂共享和溶剂分隔离子对主导,而非接触离子对,这调和了文献中关于Ln-Cl缔合的一些相互矛盾的观察结果。此外,我们表明一系列内球和外球配位络合物的热力学稳定性相当,并且阴离子与阳离子结合的动力学可能控制着超出离子对的溶液物种分布。本工作采用的技术提供了一个框架,用以研究水中阳离子更复杂的溶液化学性质。