Suppr超能文献

利用三核壳等离子体纳米颗粒提高半串联MAPbI/MASnI钙钛矿太阳能电池的光伏效率。

Enhancing photovoltaic efficiency in Half-Tandem MAPbI/ MASnI Perovskite solar cells with triple core-shell plasmonic nanoparticles.

作者信息

Ivriq Saeed Baghaee, Mohammadi Mohammad Hossein, Davidsen Rasmus Schmidt

机构信息

Department of Electrical and Computer Engineering, Aarhus University, Aarhus, 8200, Denmark.

出版信息

Sci Rep. 2025 Jan 9;15(1):1478. doi: 10.1038/s41598-025-85243-4.

Abstract

Significant progress has been made through the optimization of modelling and device architecture solar cells has proven to be a valuable and highly effective approach for gaining a deeper understanding of the underlying physical processes in solar cells. Consequently, this research has conducted a two-dimensional (2D) perovskite solar cells (PSCs) simulation to develop an accurate model. The approach utilized in this study is based on the finite element method (FEM). Initially, a new configuration was introduced by incorporating a CHNHSnI layer as the absorber within the PSC structure, forming a parallel architecture. As a result, the power conversion efficiency (PCE) of PSC increased up to 26.89%. The light trapping process plays an essential role in enhancing the performance of PSCs. For this purpose, we utilized arrays of metal nanostructures on the active layer (AL) which resulted in significantly enhancing light absorption within these layers. In this research, the influence of nanoparticles position within the AL, the radius of nanoparticles and their composition (gold (Au) and silver (Ag)) on enhancing absorption in PSCs are examined by determining the cross-sectional area of light scattering and absorption on Au and Ag nanoparticles. The optimal position for the plasmonic nanoparticles was determined to be inside the MASnI as the complementary AL, 60 nm for the radius and Ag as champion composition. As a result of these modifications, the PCE reached 29.52%, representing an approximate 64% improvement compared to the planar structure. Subsequently, dielectric-metal-dielectric nanoparticles were introduced into the MASnI layer, replacing the previously embedded metallic nanoparticles, in order to enhance their chemical and thermal stability. According to optical-electrical simulation results, the short-circuit current density (J) of the proposed parallel PSC, featuring triple core-shell nanoparticles composed of TiO@Ag@TiO and SiO@Ag@SiO, has been improved by approximately 40% and 41.5%, respectively, compared to a PSC lacking nanoparticles. Moreover, under optimal conditions for the PSC, the open-circuit voltage (V), J, fill factor (FF), and PCE were simulated at 1.01 V, 35.17 mA/cm², 84.16, and 30.18%, respectively. This approach paves the way for advancements in the development of perovskite solar cells, offering significant potential for practical applications and enhanced efficiency.

摘要

通过对建模和器件结构的优化取得了显著进展,太阳能电池已被证明是深入理解太阳能电池潜在物理过程的一种有价值且高效的方法。因此,本研究对二维(2D)钙钛矿太阳能电池(PSC)进行了模拟,以建立一个精确的模型。本研究采用的方法基于有限元法(FEM)。最初,通过在PSC结构中引入CHNHSnI层作为吸收层,形成了一种并联结构,从而引入了一种新的结构配置。结果,PSC的功率转换效率(PCE)提高到了26.89%。光捕获过程在提高PSC的性能方面起着至关重要的作用。为此,我们在有源层(AL)上使用了金属纳米结构阵列,这显著增强了这些层内的光吸收。在本研究中,通过确定金(Au)和银(Ag)纳米颗粒上光散射和吸收的横截面积,研究了纳米颗粒在AL内的位置、纳米颗粒的半径及其组成(金(Au)和银(Ag))对增强PSC吸收的影响。确定等离子体纳米颗粒的最佳位置是在作为互补AL的MASnI内部,半径为60 nm,最佳组成是Ag。由于这些改进,PCE达到了29.52%,与平面结构相比提高了约64%。随后,将介电-金属-介电纳米颗粒引入MASnI层,取代先前嵌入的金属纳米颗粒,以提高其化学和热稳定性。根据光电模拟结果,与不含纳米颗粒的PSC相比,由TiO@Ag@TiO和SiO@Ag@SiO组成的具有三核壳纳米颗粒的并联PSC的短路电流密度(J)分别提高了约40%和41.5%。此外,在PSC的最佳条件下,开路电压(V)、J、填充因子(FF)和PCE分别模拟为1.01 V、35.17 mA/cm²、84.16和30.18%。这种方法为钙钛矿太阳能电池的发展进步铺平了道路,在实际应用和提高效率方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8351/11718194/ed0dfb699b5b/41598_2025_85243_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验