Suppr超能文献

针对使用佩戴于髋部的加速度计数据来识别老年女性离床时间的现有算法进行参数化和验证。

Parameterizing and validating existing algorithms for identifying out-of-bed time using hip-worn accelerometer data from older women.

机构信息

Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States of America. Center for Behavioral Epidemiology and Community Health, Graduate School of Public Health, San Diego State University, San Diego, CA, United States of America. University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States of America. Author to whom any correspondence should be addressed.

出版信息

Physiol Meas. 2019 Jul 30;40(7):075008. doi: 10.1088/1361-6579/ab1c04.

Abstract

OBJECTIVE

To parameterize and validate two existing algorithms for identifying out-of-bed time using 24 h hip-worn accelerometer data from older women.

APPROACH

Overall, 628 women (80  ±  6 years old) wore ActiGraph GT3X+  accelerometers 24 h d for up to 7 d and concurrently completed sleep-logs. Trained staff used a validated visual analysis protocol to measure in-bed periods on accelerometer tracings (criterion). The Tracy and McVeigh algorithms were adapted for optimal use in older adults. A training set of 314 women was used to choose two key thresholds by maximizing the sum of sensitivity and specificity for each algorithm and data (vertical axis, VA, and vector magnitude [VM]) combination. Data from the remaining 314 women were then used to test agreement in waking wear time (i.e. out-of-bed time while wearing the accelerometer) by computing sensitivity, specificity, and kappa comparing the algorithm output with the criterion. Waking wear time-adjusted means of sedentary time, light-intensity physical activity (light PA) and moderate-to-vigorous-intensity physical activity (MVPA) were then estimated and compared.

MAIN RESULTS

Waking wear time agreement with the criterion was high for Tracy_, Tracy_, McVeigh_, and highest for McVeigh_. Compared to the criterion, McVeigh_ had mean sensitivity  =  0.92, specificity  =  0.87, kappa  =  0.80, and overall mean difference (±SD) of  -0.04  ±  2.5 h d. Minutes of sedentary time, light PA, and MVPA adjusted for waking wear time using the criterion measure and McVeigh_ were not statistically different (p   >  0.43|all).

SIGNIFICANCE

The McVeigh algorithm with optimal parameters using VM performed best compared to criterion sleep-log assisted visual analysis and is suitable for automated identification of waking wear time in older women when visual analysis is not feasible.

摘要

目的

利用 24 小时佩戴于髋部的加速度计数据,针对老年女性,对两种现有的识别离床时间的算法进行参数化和验证。

方法

共有 628 名女性(80±6 岁)佩戴 ActiGraph GT3X+加速度计 24 小时 d,最多 7 天,并同时完成睡眠日志。训练有素的工作人员使用经过验证的视觉分析方案来测量加速度计轨迹上的卧床时间(标准)。对 Tracy 和 McVeigh 算法进行了调整,以优化其在老年人中的使用。使用 314 名女性的训练集通过最大化每个算法和数据(垂直轴,VA 和矢量幅度[VM])组合的敏感性和特异性的总和来选择两个关键阈值。然后,使用其余 314 名女性的数据,通过计算算法输出与标准之间的敏感性、特异性和 Kappa,来测试在佩戴加速度计的清醒佩戴时间(即离床时间)的一致性。然后估计并比较了久坐时间、低强度体力活动(LPA)和中等到剧烈强度体力活动(MVPA)的清醒佩戴时间调整后的平均值。

主要结果

Tracy_、Tracy_、McVeigh_和 McVeigh_与标准的清醒佩戴时间一致性较高。与标准相比,McVeigh_的平均敏感性为 0.92,特异性为 0.87,Kappa 为 0.80,总体平均差异(±SD)为-0.04±2.5 小时 d。使用标准测量和 McVeigh_调整清醒佩戴时间后的久坐时间、LPA 和 MVPA 分钟数没有统计学差异(p>0.43|全部)。

意义

与标准的睡眠日志辅助视觉分析相比,使用 VM 的最佳参数的 McVeigh 算法表现最佳,并且当视觉分析不可行时,适合用于自动识别老年女性的清醒佩戴时间。

相似文献

3
Calibration and Validation of a Wrist- and Hip-Worn Actigraph Accelerometer in 4-Year-Old Children.
PLoS One. 2016 Sep 12;11(9):e0162436. doi: 10.1371/journal.pone.0162436. eCollection 2016.
5
Assessment of wear/nonwear time classification algorithms for triaxial accelerometer.
Med Sci Sports Exerc. 2012 Oct;44(10):2009-16. doi: 10.1249/MSS.0b013e318258cb36.
6
Examining accelerometer validity for estimating physical activity in pre-schoolers during free-living activity.
Scand J Med Sci Sports. 2019 Oct;29(10):1618-1628. doi: 10.1111/sms.13496. Epub 2019 Jul 2.
8
A comparison of 10 accelerometer non-wear time criteria and logbooks in children.
BMC Public Health. 2018 Mar 6;18(1):323. doi: 10.1186/s12889-018-5212-4.
9
Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults.
J Sports Sci. 2020 Nov;38(22):2569-2578. doi: 10.1080/02640414.2020.1794244. Epub 2020 Jul 17.
10
Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
Med Sci Sports Exerc. 2016 May;48(5):933-40. doi: 10.1249/MSS.0000000000000840.

本文引用的文献

2
Identifying bedrest using 24-h waist or wrist accelerometry in adults.
PLoS One. 2018 Mar 23;13(3):e0194461. doi: 10.1371/journal.pone.0194461. eCollection 2018.
5
The Objective Physical Activity and Cardiovascular Disease Health in Older Women (OPACH) Study.
BMC Public Health. 2017 Feb 14;17(1):192. doi: 10.1186/s12889-017-4065-6.
10
Identifying children's nocturnal sleep using 24-h waist accelerometry.
Med Sci Sports Exerc. 2015 May;47(5):937-43. doi: 10.1249/MSS.0000000000000486.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验