Suppr超能文献

从布洛赫振荡到清洁相互作用系统中的多体局域化。

From Bloch oscillations to many-body localization in clean interacting systems.

机构信息

Institute of Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125

Institute of Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125.

出版信息

Proc Natl Acad Sci U S A. 2019 May 7;116(19):9269-9274. doi: 10.1073/pnas.1819316116. Epub 2019 Apr 24.

Abstract

In this work we demonstrate that nonrandom mechanisms that lead to single-particle localization may also lead to many-body localization, even in the absence of disorder. In particular, we consider interacting spins and fermions in the presence of a linear potential. In the noninteracting limit, these models show the well-known Wannier-Stark localization. We analyze the fate of this localization in the presence of interactions. Remarkably, we find that beyond a critical value of the potential gradient these models exhibit nonergodic behavior as indicated by their spectral and dynamical properties. These models, therefore, constitute a class of generic nonrandom models that fail to thermalize. As such, they suggest new directions for experimentally exploring and understanding the phenomena of many-body localization. We supplement our work by showing that by using machine-learning techniques the level statistics of a system may be calculated without generating and diagonalizing the Hamiltonian, which allows a generation of large statistics.

摘要

在这项工作中,我们证明了导致单粒子局域化的非随机机制也可能导致多体局域化,即使在没有无序的情况下也是如此。具体来说,我们考虑了存在线性势的相互作用自旋和费米子。在非相互作用极限下,这些模型表现出众所周知的Wannier-Stark 局域化。我们分析了在相互作用存在的情况下这种局域化的命运。值得注意的是,我们发现,超过势梯度的一个临界值,这些模型表现出非遍历行为,这表明它们的谱和动力学特性。因此,这些模型构成了一类通用的非随机模型,它们不能热化。因此,它们为实验探索和理解多体局域化现象提供了新的方向。我们通过展示可以使用机器学习技术来计算系统的能级统计,而无需生成和对角化哈密顿量,这允许生成大量的统计数据,来补充我们的工作。

相似文献

1
From Bloch oscillations to many-body localization in clean interacting systems.从布洛赫振荡到清洁相互作用系统中的多体局域化。
Proc Natl Acad Sci U S A. 2019 May 7;116(19):9269-9274. doi: 10.1073/pnas.1819316116. Epub 2019 Apr 24.
2
Stark Many-Body Localization.强关联多体局域化。
Phys Rev Lett. 2019 Feb 1;122(4):040606. doi: 10.1103/PhysRevLett.122.040606.
4
Bath-Induced Decay of Stark Many-Body Localization.浴致斯塔克多体局域化的衰减
Phys Rev Lett. 2019 Jul 19;123(3):030602. doi: 10.1103/PhysRevLett.123.030602.
5
Exploring Localization in Nuclear Spin Chains.探索核自旋链中的局域化
Phys Rev Lett. 2018 Feb 16;120(7):070501. doi: 10.1103/PhysRevLett.120.070501.
7
Probing entanglement in a many-body-localized system.探索多体局域化系统中的纠缠
Science. 2019 Apr 19;364(6437):256-260. doi: 10.1126/science.aau0818. Epub 2019 Apr 18.
8
10
Observation of Stark many-body localization without disorder.无无序体系中的 Stark 多体局域化观测。
Nature. 2021 Nov;599(7885):393-398. doi: 10.1038/s41586-021-03988-0. Epub 2021 Nov 17.

引用本文的文献

6
Reviving product states in the disordered Heisenberg chain.恢复无序海森堡链中的产物态
Nat Commun. 2023 Sep 20;14(1):5847. doi: 10.1038/s41467-023-41464-7.
8
Observation of Stark many-body localization without disorder.无无序体系中的 Stark 多体局域化观测。
Nature. 2021 Nov;599(7885):393-398. doi: 10.1038/s41586-021-03988-0. Epub 2021 Nov 17.

本文引用的文献

1
Stark Many-Body Localization.强关联多体局域化。
Phys Rev Lett. 2019 Feb 1;122(4):040606. doi: 10.1103/PhysRevLett.122.040606.
4
Many-body localization: stability and instability.多体局域化:稳定性与不稳定性。
Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2016.0422.
5
Two Universality Classes for the Many-Body Localization Transition.多体局域化转变的两个普适类。
Phys Rev Lett. 2017 Aug 18;119(7):075702. doi: 10.1103/PhysRevLett.119.075702. Epub 2017 Aug 16.
6
Disorder-Free Localization.无紊乱定位
Phys Rev Lett. 2017 Jun 30;118(26):266601. doi: 10.1103/PhysRevLett.118.266601. Epub 2017 Jun 27.
7
Quasi-Many-Body Localization in Translation-Invariant Systems.平移不变系统中的准多体局域化
Phys Rev Lett. 2016 Dec 9;117(24):240601. doi: 10.1103/PhysRevLett.117.240601. Epub 2016 Dec 7.
8
Diagonalization and Many-Body Localization for a Disordered Quantum Spin Chain.无序量子自旋链的对角化和多体局域化。
Phys Rev Lett. 2016 Jul 8;117(2):027201. doi: 10.1103/PhysRevLett.117.027201. Epub 2016 Jul 5.
9
Phase Structure of Driven Quantum Systems.驱动量子系统的相结构
Phys Rev Lett. 2016 Jun 24;116(25):250401. doi: 10.1103/PhysRevLett.116.250401. Epub 2016 Jun 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验