Scherg Sebastian, Kohlert Thomas, Sala Pablo, Pollmann Frank, Hebbe Madhusudhana Bharath, Bloch Immanuel, Aidelsburger Monika
Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany.
Max-Planck-Institut für Quantenoptik, Garching, Germany.
Nat Commun. 2021 Jul 23;12(1):4490. doi: 10.1038/s41467-021-24726-0.
The thermalization of isolated quantum many-body systems is deeply related to fundamental questions of quantum information theory. While integrable or many-body localized systems display non-ergodic behavior due to extensively many conserved quantities, recent theoretical studies have identified a rich variety of more exotic phenomena in between these two extreme limits. The tilted one-dimensional Fermi-Hubbard model, which is readily accessible in experiments with ultracold atoms, emerged as an intriguing playground to study non-ergodic behavior in a clean disorder-free system. While non-ergodic behavior was established theoretically in certain limiting cases, there is no complete understanding of the complex thermalization properties of this model. In this work, we experimentally study the relaxation of an initial charge-density wave and find a remarkably long-lived initial-state memory over a wide range of parameters. Our observations are well reproduced by numerical simulations of a clean system. Using analytical calculations we further provide a detailed microscopic understanding of this behavior, which can be attributed to emergent kinetic constraints.
孤立量子多体系统的热化与量子信息理论的基本问题密切相关。可积或多体局域化系统由于存在大量守恒量而表现出非遍历行为,而最近的理论研究在这两个极端极限之间发现了丰富多样的更为奇特的现象。倾斜的一维费米 - 哈伯德模型在超冷原子实验中易于实现,成为研究无杂质无无序系统中非遍历行为的一个有趣平台。虽然在某些极限情况下从理论上确立了非遍历行为,但对该模型复杂的热化性质尚无完整理解。在这项工作中,我们通过实验研究了初始电荷密度波的弛豫,并在很宽的参数范围内发现了显著长寿命的初始态记忆。我们的观测结果在纯净系统的数值模拟中得到了很好的重现。通过解析计算,我们进一步对这种行为提供了详细的微观理解,这可归因于涌现的动力学约束。