IEEE Trans Neural Syst Rehabil Eng. 2019 Jun;27(6):1117-1127. doi: 10.1109/TNSRE.2019.2913142. Epub 2019 Apr 25.
Accurate classification of Electroencephalogram (EEG) signals plays an important role in diagnoses of different type of mental activities. One of the most important challenges, associated with classification of EEG signals is how to design an efficient classifier consisting of strong generalization capability. Aiming to improve the classification performance, in this paper, we propose a novel multiclass support matrix machine (M-SMM) from the perspective of maximizing the inter-class margins. The objective function is a combination of binary hinge loss that works on C matrices and spectral elastic net penalty as regularization term. This regularization term is a combination of Frobenius and nuclear norm, which promotes structural sparsity and shares similar sparsity patterns across multiple predictors. It also maximizes the inter-class margin that helps to deal with complex high dimensional noisy data. The extensive experiment results supported by theoretical analysis and statistical tests show the effectiveness of the M-SMM for solving the problem of classifying EEG signals associated with motor imagery in brain-computer interface applications.
准确地对脑电 (EEG) 信号进行分类在不同类型的精神活动诊断中起着重要作用。与 EEG 信号分类相关的最重要挑战之一是如何设计具有强大泛化能力的有效分类器。为了提高分类性能,本文从最大化类间边界的角度提出了一种新的多类支持矩阵机 (M-SMM)。目标函数是在 C 矩阵上工作的二进制铰链损失和谱弹性网惩罚项的组合作为正则化项。该正则化项是 Frobenius 范数和核范数的组合,促进了结构稀疏性,并在多个预测器之间共享相似的稀疏模式。它还最大化了类间边界,有助于处理复杂的高维噪声数据。通过理论分析和统计检验支持的广泛实验结果表明,M-SMM 对于解决脑机接口应用中与运动想象相关的 EEG 信号分类问题是有效的。