Suppr超能文献

贝叶斯随机移位高斯过程提高了试验水平事件相关电位的数据质量和统计功效。

Improved data quality and statistical power of trial-level event-related potentials with Bayesian random-shift Gaussian processes.

机构信息

Department of Biostatistics and Data Science, Augusta University, Augusta, GA, 30912, USA.

Department of Statistics, Rice University, Houston, TX, 77005, USA.

出版信息

Sci Rep. 2024 Apr 17;14(1):8856. doi: 10.1038/s41598-024-59579-2.

Abstract

Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure can obscure scientifically relevant variability across subjects and trials, but has been necessary due to the difficulties posed by inference of trial-level ERPs. We introduce the Bayesian Random Phase-Amplitude Gaussian Process (RPAGP) model, for inference of trial-level amplitude, latency, and ERP waveforms. We apply RPAGP to data from a study of ERP responses to emotionally arousing images. The model estimates of trial-specific signals are shown to greatly improve statistical power in detecting significant differences in experimental conditions compared to existing methods. Our results suggest that replacing the observed data with the de-noised RPAGP predictions can potentially improve the sensitivity and accuracy of many of the existing ERP analysis pipelines.

摘要

通过脑电图 (EEG) 记录研究认知过程,通常会分析多个被试和试验的平均组级事件相关电位 (ERP)。这种平均处理过程可能会掩盖被试和试验之间具有科学意义的可变性,但由于推断试验级 ERP 带来的困难,这种方法是必要的。我们引入了贝叶斯随机相位-幅度高斯过程 (RPAGP) 模型,用于推断试验级幅度、潜伏期和 ERP 波形。我们将 RPAGP 应用于一项研究情绪唤起图像的 ERP 反应的数据。与现有方法相比,该模型对特定于试验的信号的估计极大地提高了检测实验条件下显著差异的统计能力。我们的结果表明,用去噪的 RPAGP 预测值代替观测数据,可能会提高许多现有的 ERP 分析管道的灵敏度和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9453/11024164/4f52adb3ef4c/41598_2024_59579_Fig1_HTML.jpg

相似文献

4
Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.
Neuroimage. 2015 May 1;111:442-53. doi: 10.1016/j.neuroimage.2015.01.062. Epub 2015 Feb 7.
5
Bayesian estimation of ERP components from multicondition and multichannel EEG.
Neuroimage. 2014 Mar;88:319-39. doi: 10.1016/j.neuroimage.2013.11.028. Epub 2013 Dec 12.
6
The application of particle filters in single trial event-related potential estimation.
Physiol Meas. 2009 Oct;30(10):1101-16. doi: 10.1088/0967-3334/30/10/010. Epub 2009 Sep 16.
7
Standardized measurement error: A universal metric of data quality for averaged event-related potentials.
Psychophysiology. 2021 Jun;58(6):e13793. doi: 10.1111/psyp.13793. Epub 2021 Mar 29.
8
9
Second Order Blind Identification of Event Related Potentials Sources.
Brain Topogr. 2023 Nov;36(6):797-815. doi: 10.1007/s10548-023-00998-1. Epub 2023 Aug 25.
10
Trial latencies estimation of event-related potentials in EEG by means of genetic algorithms.
J Neural Eng. 2018 Apr;15(2):026016. doi: 10.1088/1741-2552/aa9b97.

本文引用的文献

1
Electrophysiological normative responses to emotional, neutral, and cigarette-related images.
Psychophysiology. 2023 Mar;60(3):e14196. doi: 10.1111/psyp.14196. Epub 2022 Oct 31.
3
An EEG Classification-Based Method for Single-Trial N170 Latency Detection and Estimation.
Comput Math Methods Med. 2022 Feb 18;2022:6331956. doi: 10.1155/2022/6331956. eCollection 2022.
4
5
Standardized measurement error: A universal metric of data quality for averaged event-related potentials.
Psychophysiology. 2021 Jun;58(6):e13793. doi: 10.1111/psyp.13793. Epub 2021 Mar 29.
6
Case-by-case: Emotional stimulus significance and the modulation of the EPN and LPP.
Psychophysiology. 2021 Apr;58(4):e13766. doi: 10.1111/psyp.13766. Epub 2021 Jan 22.
8
Predicting individual decision-making responses based on single-trial EEG.
Neuroimage. 2020 Feb 1;206:116333. doi: 10.1016/j.neuroimage.2019.116333. Epub 2019 Nov 4.
9
Estimating statistical power for event-related potential studies using the late positive potential.
Psychophysiology. 2020 Feb;57(2):e13482. doi: 10.1111/psyp.13482. Epub 2019 Oct 14.
10
Multiclass Support Matrix Machines by Maximizing the Inter-Class Margin for Single Trial EEG Classification.
IEEE Trans Neural Syst Rehabil Eng. 2019 Jun;27(6):1117-1127. doi: 10.1109/TNSRE.2019.2913142. Epub 2019 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验