Department of Biostatistics and Data Science, Augusta University, Augusta, GA, 30912, USA.
Department of Statistics, Rice University, Houston, TX, 77005, USA.
Sci Rep. 2024 Apr 17;14(1):8856. doi: 10.1038/s41598-024-59579-2.
Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure can obscure scientifically relevant variability across subjects and trials, but has been necessary due to the difficulties posed by inference of trial-level ERPs. We introduce the Bayesian Random Phase-Amplitude Gaussian Process (RPAGP) model, for inference of trial-level amplitude, latency, and ERP waveforms. We apply RPAGP to data from a study of ERP responses to emotionally arousing images. The model estimates of trial-specific signals are shown to greatly improve statistical power in detecting significant differences in experimental conditions compared to existing methods. Our results suggest that replacing the observed data with the de-noised RPAGP predictions can potentially improve the sensitivity and accuracy of many of the existing ERP analysis pipelines.
通过脑电图 (EEG) 记录研究认知过程,通常会分析多个被试和试验的平均组级事件相关电位 (ERP)。这种平均处理过程可能会掩盖被试和试验之间具有科学意义的可变性,但由于推断试验级 ERP 带来的困难,这种方法是必要的。我们引入了贝叶斯随机相位-幅度高斯过程 (RPAGP) 模型,用于推断试验级幅度、潜伏期和 ERP 波形。我们将 RPAGP 应用于一项研究情绪唤起图像的 ERP 反应的数据。与现有方法相比,该模型对特定于试验的信号的估计极大地提高了检测实验条件下显著差异的统计能力。我们的结果表明,用去噪的 RPAGP 预测值代替观测数据,可能会提高许多现有的 ERP 分析管道的灵敏度和准确性。