Beckman B S, Kopfler W, Koury P, Jeter J R
Exp Cell Res. 1987 Mar;169(1):223-32. doi: 10.1016/0014-4827(87)90240-0.
Aphidicolin, a specific and reversible inhibitor of DNA polymerase alpha, was examined as a potential tool to evaluate the relationship between proliferative and differentiative events in Friend erythroleukemia cell (FELC) maturation. Since FELC can be induced to differentiate along the erythrocytic pathway with a variety of inducing agents, the effects of aphidicolin were tested on proliferating FELC and cells which were induced to differentiate with the potent inducer, hexamethylene bisacetamide (HMBA). Exposure of FELC to aphidicolin resulted in unbalanced growth within 24 h, as reflected by abnormally large cells, compared with untreated cells. In the presence of 10 or 50 microM aphidicolin, 75-90% of cells became differentiated (benzidine+ cells) within 48 h, although by 72 h cells treated with aphidicolin were non-viable as determined by trypan blue staining. A wider range of aphidicolin concentrations was tested in an effort to determine the optimal concentration of aphidicolin that maximally induced differentiation with minimal loss of cell viability. Continuous exposure of FELC from 24-96 h with doses of aphidicolin ranging from 0.5 to 50 microM was more effective for differentiation induction than was short-term exposure (1, 2, 4, 12 h) to the drug, although 1 h of exposure significantly (p less than 0.01) increased differentiation (28.1 +/- 7.8%) compared with untreated cells (2.7 +/- 1.0%). When cells were treated with HMBA (5 mM) and aphidicolin (1, 5, 10 microM), in combination, aphidicolin shifted the time of onset of differentiation from 72 to 48 h, but did not act synergistically or additively with HMBA; nor was the induction effect of aphidicolin changed by HMBA. In contrast, suboptimal doses of aphidicolin (0.5 microM) in combination with HMBA (2.5 mM) produced an additive effect on FELC differentiation. In addition, [3H]thymidine experiments demonstrated that aphidicolin reversibly blocked FELC in S phase and at G1-S interface of the cell cycle. These results indicate that aphidicolin can induce the differentiation of FELC, and that a complete round of replicative DNA synthesis is not required for differentiation to occur.