Suppr超能文献

在无模板蛋白质结构预测中,通过构象采样来平衡多个目标,以控制诱饵多样性。

Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction.

机构信息

Department of Computer Science, George Mason University, Fairfax, 22030, VA, USA.

Department of Bioengineering, George Mason University, Fairfax, 22030, VA, USA.

出版信息

BMC Bioinformatics. 2019 Apr 25;20(1):211. doi: 10.1186/s12859-019-2794-5.

Abstract

BACKGROUND

Computational approaches for the determination of biologically-active/native three-dimensional structures of proteins with novel sequences have to handle several challenges. The (conformation) space of possible three-dimensional spatial arrangements of the chain of amino acids that constitute a protein molecule is vast and high-dimensional. Exploration of the conformation spaces is performed in a sampling-based manner and is biased by the internal energy that sums atomic interactions. Even state-of-the-art energy functions that quantify such interactions are inherently inaccurate and associate with protein conformation spaces overly rugged energy surfaces riddled with artifact local minima. The response to these challenges in template-free protein structure prediction is to generate large numbers of low-energy conformations (also referred to as decoys) as a way of increasing the likelihood of having a diverse decoy dataset that covers a sufficient number of local minima possibly housing near-native conformations.

RESULTS

In this paper we pursue a complementary approach and propose to directly control the diversity of generated decoys. Inspired by hard optimization problems in high-dimensional and non-linear variable spaces, we propose that conformation sampling for decoy generation is more naturally framed as a multi-objective optimization problem. We demonstrate that mechanisms inherent to evolutionary search techniques facilitate such framing and allow balancing multiple objectives in protein conformation sampling. We showcase here an operationalization of this idea via a novel evolutionary algorithm that has high exploration capability and is also able to access lower-energy regions of the energy landscape of a given protein with similar or better proximity to the known native structure than several state-of-the-art decoy generation algorithms.

CONCLUSIONS

The presented results constitute a promising research direction in improving decoy generation for template-free protein structure prediction with regards to balancing of multiple conflicting objectives under an optimization framework. Future work will consider additional optimization objectives and variants of improvement and selection operators to apportion a fixed computational budget. Of particular interest are directions of research that attenuate dependence on protein energy models.

摘要

背景

具有新序列的蛋白质生物活性/天然三维结构的计算方法必须应对几个挑战。构成蛋白质分子的氨基酸链的可能三维空间排列的构象空间是广阔的和高维的。构象空间的探索是以基于采样的方式进行的,并受到总和原子相互作用的内能的影响。即使是定量描述这种相互作用的最先进的能量函数也是内在不准确的,并且与蛋白质构象空间过度崎岖的能量表面相关联,这些能量表面充满了人为的局部最小值。在无模板蛋白质结构预测中应对这些挑战的方法是生成大量低能量构象(也称为诱饵),以增加具有多样性诱饵数据集的可能性,该数据集覆盖了足够数量的局部最小值,这些局部最小值可能容纳接近天然的构象。

结果

在本文中,我们采用了一种互补的方法,提出直接控制生成诱饵的多样性。受高维非线性变量空间中硬优化问题的启发,我们提出构象采样生成诱饵更自然地被构造成多目标优化问题。我们证明了进化搜索技术固有的机制促进了这种构象,并允许在蛋白质构象采样中平衡多个目标。在这里,我们通过一种新的进化算法展示了这种思想的实现,该算法具有高探索能力,并且能够以与几种最先进的诱饵生成算法相比类似或更好的接近已知天然结构的方式访问给定蛋白质的能量景观的较低能量区域。

结论

所呈现的结果构成了在优化框架下平衡多个冲突目标的无模板蛋白质结构预测中改进诱饵生成的有前途的研究方向。未来的工作将考虑额外的优化目标和改进和选择算子的变体,以分配固定的计算预算。特别感兴趣的是研究方向,可以减轻对蛋白质能量模型的依赖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ab/6485169/27115e4ba499/12859_2019_2794_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验