Suppr超能文献

从头算蛋白质结构预测中偏向诱饵采样的概率搜索与能量引导

Probabilistic search and energy guidance for biased decoy sampling in ab initio protein structure prediction.

作者信息

Molloy Kevin, Saleh Sameh, Shehu Amarda

机构信息

George Mason University, Fairfax.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2013 Sep-Oct;10(5):1162-75. doi: 10.1109/TCBB.2013.29.

Abstract

Adequate sampling of the conformational space is a central challenge in ab initio protein structure prediction. In the absence of a template structure, a conformational search procedure guided by an energy function explores the conformational space, gathering an ensemble of low-energy decoy conformations. If the sampling is inadequate, the native structure may be missed altogether. Even if reproduced, a subsequent stage that selects a subset of decoys for further structural detail and energetic refinement may discard near-native decoys if they are high energy or insufficiently represented in the ensemble. Sampling should produce a decoy ensemble that facilitates the subsequent selection of near-native decoys. In this paper, we investigate a robotics-inspired framework that allows directly measuring the role of energy in guiding sampling. Testing demonstrates that a soft energy bias steers sampling toward a diverse decoy ensemble less prone to exploiting energetic artifacts and thus more likely to facilitate retainment of near-native conformations by selection techniques. We employ two different energy functions, the associative memory Hamiltonian with water and Rosetta. Results show that enhanced sampling provides a rigorous testing of energy functions and exposes different deficiencies in them, thus promising to guide development of more accurate representations and energy functions.

摘要

在从头开始的蛋白质结构预测中,充分采样构象空间是一项核心挑战。在没有模板结构的情况下,由能量函数引导的构象搜索程序会探索构象空间,收集一组低能量的诱饵构象。如果采样不充分,可能会完全错过天然结构。即使天然结构被重现,如果接近天然的诱饵构象能量高或在集合中代表性不足,那么在后续选择一组诱饵进行进一步结构细节和能量优化的阶段,这些接近天然的诱饵构象可能会被丢弃。采样应产生一个诱饵集合,便于后续选择接近天然的诱饵构象。在本文中,我们研究了一个受机器人技术启发的框架,该框架允许直接测量能量在引导采样中的作用。测试表明,软能量偏差会引导采样朝着一个多样化的诱饵集合进行,该集合不太容易利用能量假象,因此更有可能通过选择技术促进保留接近天然的构象。我们使用了两种不同的能量函数,即带水的关联记忆哈密顿量和罗塞塔。结果表明,增强采样为能量函数提供了严格的测试,并揭示了它们不同的缺陷,因此有望指导开发更准确的表示方法和能量函数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验