Groenewald Ferdinand, Raubenheimer Helgard G, Dillen Jan, Esterhuysen Catharine
Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Stellenbosch, Matieland, 7602, South Africa.
J Mol Model. 2019 Apr 26;25(5):135. doi: 10.1007/s00894-019-4018-3.
In this computational study, we investigate the ability of various neutral R-Au-NHC (NHC = N-heterocyclic carbene) complexes [R = H, CH, Cl, OH] to form hydrogen bonds with the amphiprotic binary hydrides NH, HO and HF. Optimized geometries of the adducts calculated at various levels of theory all exhibit Au⋯HX hydrogen bonds. In adducts of complexes containing NHC ligands with α(N)H units, (NH)⋯XH interactions also exist, yielding hydrogen-bonded rings with graph-set notation [Formula: see text] that correspond to pseudo chelates with κC,H coordination. AIM analysis at the MP2/aug-cc-pVTZ-pp level of theory indicates that the (NH)⋯XH hydrogen bonds are generally stronger than the Au···HX interactions, except for those involving HF. The Au⋯HX interactions vary with the Lewis basicity of the Au(I) center as a result of the nature of the R ligand, while the (NH)⋯XH hydrogen bonds are unaffected by R. Energy decomposition analysis at the BP86/TZP level of theory identifies the origin of this difference as the greater component of polarization involved in Au⋯HX interactions. Replacing the α(N)Hs with methyl groups prevents formation of a strong (NH)⋯XH interaction, thus reducing the overall stabilization of the adducts. Nevertheless, the Au⋯H interactions remain largely unchanged and are strong enough to sustain the hydrogen-bonded complexes, although weak C-H⋯X interactions are often also present.
在这项计算研究中,我们研究了各种中性R - Au - NHC(NHC = N - 杂环卡宾)配合物[R = H、CH、Cl、OH]与两性二元氢化物NH₃、H₂O和HF形成氢键的能力。在不同理论水平下计算得到的加合物优化几何结构均显示出Au⋯HX氢键。在含有NHC配体且带有α(N)H单元的配合物加合物中,还存在(NH₃)⋯XH相互作用,形成具有图式符号[公式:见正文]的氢键环,这对应于具有κC,H配位的假螯合物。在MP2/aug - cc - pVTZ - pp理论水平下的AIM分析表明,除了涉及HF的那些相互作用外,(NH₃)⋯XH氢键通常比Au···HX相互作用更强。由于R配体的性质,Au···HX相互作用随Au(I)中心的路易斯碱性而变化,而(NH₃)⋯XH氢键不受R的影响。在BP86/TZP理论水平下的能量分解分析确定这种差异的根源在于Au⋯HX相互作用中涉及的更大极化成分。用甲基取代α(N)Hs会阻止形成强的(NH₃)⋯XH相互作用,从而降低加合物的整体稳定性。然而,Au⋯H相互作用基本保持不变,并且足以维持氢键配合物,尽管通常也存在较弱的C - H⋯X相互作用。