Suppr超能文献

结合地球化学、电阻率层析成像和统计方法预测废弃磷石膏池重金属的空间分布。

Predicting spatial distribution of heavy metals in an abandoned phosphogypsum pond combining geochemistry, electrical resistivity tomography and statistical methods.

机构信息

Departamento de Ingeniería Minera, Geológica y Cartográfica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 52, 30203, Cartagena, Murcia, Spain.

Departamento de Ingeniería Minera, Geológica y Cartográfica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 52, 30203, Cartagena, Murcia, Spain.

出版信息

J Hazard Mater. 2019 Jul 15;374:392-400. doi: 10.1016/j.jhazmat.2019.04.045. Epub 2019 Apr 15.

Abstract

One of the wastes generated in fertiliser production from phosphoric rock is phosphogypsum, whose mismanagement lead to environmental and health risks. Therefore, a detailed evaluation of the chemical composition of phosphogypsum is necessary to determine effective means of its management. Due to the high amount of generated waste, the cost and time consumed for this characterisation by chemical analysis is limiting. Hence, efficient tools should be developed to predict the chemical composition of this waste. Thus, this study aims to: 1) determine the physic-chemical characterisation of phosphogypsum pond using geochemical and geophysical techniques and 2) predict the heavy metals spatial distribution through statistical models. Results show that the most concentrate metal is chromium with a maximum of ≈900 mg.kg and cadmium is the least concentrated (maximum ≈23 mg.kg). The Electrical Resistivity Tomography revealed the superposition of two layers. The top one (waste) presents low resistivity (≈17Ω.m) while the bottom layer shows higher resistivity (>124Ω.m). Metal concentrations and resistivities were combined by applying non-linear regression models. Cr showed the strongest correlation (R = 0.68), yielding an accurate model that was used for revealing the spatial distribution of the highest Cr concentrations in the pond, with the consequent reduction of expensive traditional methods.

摘要

在磷矿石生产肥料过程中产生的废物之一是磷石膏,如果管理不善,会带来环境和健康风险。因此,有必要对磷石膏的化学成分进行详细评估,以确定其有效管理方法。由于产生的废物数量巨大,通过化学分析进行这种特性描述的成本和时间消耗是有限的。因此,应该开发有效的工具来预测这种废物的化学成分。因此,本研究旨在:1)使用地球化学和地球物理技术确定磷石膏池的物理化学特性;2)通过统计模型预测重金属的空间分布。结果表明,最集中的金属是铬,最大值约为 ≈900mg/kg,而镉是最不集中的(最大值约为 ≈23mg/kg)。电阻率层析成像显示出两层的叠加。顶层(废物)呈现低电阻率(≈17Ω.m),而底层则显示出更高的电阻率(>124Ω.m)。通过应用非线性回归模型将金属浓度和电阻率结合起来。Cr 显示出最强的相关性(R=0.68),产生了一个准确的模型,用于揭示池塘中 Cr 浓度最高的空间分布,从而减少了昂贵的传统方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验