(a)State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. R. China; (b)Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
(b)Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
J Colloid Interface Sci. 2019 Jul 15;548:322-332. doi: 10.1016/j.jcis.2019.04.005. Epub 2019 Apr 3.
Highly microporous carbon material with nitrogen doping has been synthesized via a facile one-step approach by employing natural biowaste miscellaneous wood fibers derived hydrochar as precursor and melamine as nitrogen source respectively. The added melamine not only results in the incorporation of some nitrogen into the carbon framework but also increases the specific surface area of carbon material. Such resultant N-doped microporous carbon possesses the functionalized nitrogen doping (1.75 at. %), a large specific surface area (∼1807 m g) and abundant highly interconnected micropores. Benefiting from the synergistic effect of high specific surface area, well-developed pore size distribution and functionalized groups, this carbon material delivers a high specific capacitance of 345 F g at 0.5 A g, an excellent capacitance retention with 270 F g at up to 30 A g, and a remarkable cycle ability with 91.3% retention after 10,000 cycles at 5.0 A g. Based on it, the as-developed flexible symmetric solid-state supercapacitor delivers a high energy density of 7.92 W h kg at the power density of 250 W kg. Evidently, this work provides a facile and cost-effective route for functionalized natural biowaste-based carbon materials and further opens up a way for highly value-added recycling of biowaste-like materials.
通过采用天然生物废料杂木纤维衍生的水凝胶作为前体,三聚氰胺作为氮源,通过简便的一步法合成了具有氮掺杂的高微孔碳材料。添加的三聚氰胺不仅导致一些氮掺入碳骨架中,而且还增加了碳材料的比表面积。所得的 N 掺杂微孔碳具有官能化的氮掺杂(1.75 原子%),大的比表面积(约 1807 m²/g)和丰富的高度互连的微孔。得益于高比表面积、发达的孔径分布和官能化基团的协同效应,这种碳材料在 0.5 A/g 时具有 345 F/g 的高比电容,在高达 30 A/g 时具有 270 F/g 的出色电容保持率,并且在 5.0 A/g 时经过 10000 次循环后具有 91.3%的保持率的出色循环能力。基于此,所开发的柔性对称固态超级电容器在 250 W/kg 的功率密度下提供了 7.92 Wh/kg 的高能量密度。显然,这项工作为功能性天然生物废料基碳材料提供了一种简便且具有成本效益的途径,并进一步为高附加值的生物废料类材料的回收开辟了道路。