Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.
Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.
J Colloid Interface Sci. 2022 Mar 15;610:1088-1099. doi: 10.1016/j.jcis.2021.11.164. Epub 2021 Nov 30.
Fabrication of porous activated carbon derived from biomass waste with high surface area, specific porosity, and excellent electroactivity has attracted much more attention in the energy conversion and storage field. Herein, mango seed waste is utilized as a precursor to synthesize nitrogen (N) and oxygen (O) co-doped porous carbon by high-temperature carbonization coupling with subsequent KOH activation. The more KOH activator was fed in the high-temperature activation process, the larger surface area, higher micropore ratio, and lower N and O doping content of the activated carbon was obtained. The optimized mango seed-derived activated carbon (MSAC) exhibits high surface area (1815 m g), micropore ratio (94%), doping content of nitrogen (1.71 at.%), and oxygen (10.93 at.%), which delivers an ultrahigh specific capacitance of 402F g at 1 A g and retains 102.4% of initial capacitance after 5000 cycles. The supercapacitor performance of MSAC was also investigated in 6 M KOH, 1 M [BMIM]BF/AN, and PVA/KOH electrolytes in detail, respectively. A flexible all-solid-state asymmetric supercapacitor (FSAS) fabricated by MSAC anode, CoNiAl layered double hydroxides cathode, and PVA/KOH electrolyte achieves a high energy density of 33.65 Wh kg at a power density of 187.5 W kg and retains 80% of initial capacitance after 10,000 cycles. The low cost, facile synthetic process, and excellent electrochemical performance of MSAC electrode material provide a cheap and accessible strategy to obtain porous carbon material for energy conversion and storage systems.
由生物质废料制备具有高比表面积、特定孔隙率和优异电活性的多孔活性炭,在能源转化和存储领域引起了更多关注。在此,我们利用芒果种子废料作为前驱体,通过高温碳化与随后的 KOH 活化相结合,合成氮 (N) 和氧 (O) 共掺杂多孔碳。在高温活化过程中加入更多的 KOH 活化剂,得到的活性炭具有更大的比表面积、更高的微孔率、更低的 N 和 O 掺杂含量。优化后的芒果籽衍生活性炭 (MSAC) 具有高比表面积 (1815 m2 g)、高微孔率 (94%)、氮掺杂含量 (1.71 原子%) 和氧掺杂含量 (10.93 原子%),在 1 A g 下可提供 402 F g 的超高比电容,在 5000 次循环后保持 102.4%的初始电容。还详细研究了 MSAC 在 6 M KOH、1 M [BMIM] BF/AN 和 PVA/KOH 电解质中的超级电容器性能。由 MSAC 阳极、CoNiAl 层状双氢氧化物阴极和 PVA/KOH 电解质制成的柔性全固态非对称超级电容器 (FSAS) 在 187.5 W kg 的功率密度下实现了 33.65 Wh kg 的高能量密度,在 10000 次循环后保持 80%的初始电容。MSAC 电极材料具有低成本、简便的合成工艺和优异的电化学性能,为获得用于能源转化和存储系统的多孔碳材料提供了一种廉价且可行的策略。