Suppr超能文献

用于预测 COPD 未来高费用患者的平滑贝叶斯网络模型。

Smooth Bayesian network model for the prediction of future high-cost patients with COPD.

机构信息

Department of Management Sciences, City University of Hong Kong, Hong Kong.

School of Data Science, City University of Hong Kong, Hong Kong.

出版信息

Int J Med Inform. 2019 Jun;126:147-155. doi: 10.1016/j.ijmedinf.2019.03.017. Epub 2019 Apr 4.

Abstract

INTRODUCTION

The clinical course of chronic obstructive pulmonary disease (COPD) is marked by acute exacerbation events that increase hospitalization rates and healthcare spending. The early identification of future high-cost patients with COPD may decrease healthcare spending by informing individualized interventions that prevent exacerbation events and decelerate disease progression. Existing studies of cost prediction of other chronic diseases have applied regression and machine-learning methods that cannot capture the complex causal relationships between COPD factors. Thus, the exploration of these factors through nonlinear, high-dimensional but explainable modeling is greatly needed.

OBJECTIVES

We aimed to develop a machine-learning model to identify future high-cost patients with COPD. Such a model should incorporate expert knowledge about causal relationships, and the method for estimating the model could provide more accurate predictions than other machine learning methods.

METHODS

We used the 2011-2013 medical insurance data of patients with COPD in a large city. The data set included demographic information and admission records. Leveraging on developments in graphical modeling methods, we proposed a smooth Bayesian network (SBN) model for the prediction of high-cost individuals using medical insurance data. The modeling method incorporated some expert knowledge about causal relationships (i.e., about the Bayesian network structure). We employed a smoothing kernel based on the weighted nearest neighborhood method in the SBN model to address overfitting, case-mix effect, and data sparsity (i.e., using data about "similar patients").

RESULTS

The proposed SBN achieved the area under curve (AUC) of 0.80 and showed considerable improvement over the baseline machine-learning methods. Besides confirming the known factors from the literature, we found "region" (i.e., a suburban or urban area) to be a significant factor, and that in a 3-tier system with primary, secondary and tertiary hospitals, COPD patients who had been admitted to primary hospitals were more likely to develop into future high-cost patients than patients who had been admitted to tertiary hospitals.

CONCLUSION

The proposed SBN model not only obtained higher prediction accuracy and stronger generalizability than a number of benchmark machine-learning methods, but also used the Bayesian network to capture the complex causal relationships between different predictors by incorporating expert knowledge. Furthermore, a framework was developed to establish the relationships between exposure to historical trajectory and future outcome, which can also be applied to other temporal data to model different trajectory information and predict other outcomes.

摘要

简介

慢性阻塞性肺疾病(COPD)的临床病程以急性加重事件为特征,这些事件会增加住院率和医疗保健支出。通过识别未来 COPD 高成本患者,可以通过实施预防加重事件和减缓疾病进展的个体化干预措施来降低医疗保健支出。现有的其他慢性疾病成本预测研究已经应用了回归和机器学习方法,但这些方法无法捕捉 COPD 因素之间复杂的因果关系。因此,非常需要通过非线性、高维但可解释的建模来探索这些因素。

目的

我们旨在开发一种机器学习模型来识别未来 COPD 高成本患者。这样的模型应该包含关于因果关系的专家知识,并且该方法用于估计模型可以比其他机器学习方法提供更准确的预测。

方法

我们使用了一个大城市 2011-2013 年 COPD 患者的医疗保险数据。该数据集包括人口统计学信息和入院记录。利用图形建模方法的发展,我们提出了一种基于平滑贝叶斯网络(SBN)的模型,用于使用医疗保险数据预测高成本个体。该建模方法包含了一些关于因果关系的专家知识(即关于贝叶斯网络结构的知识)。我们在 SBN 模型中使用了基于加权最近邻方法的平滑核来解决过拟合、病例组合效应和数据稀疏性(即使用“相似患者”的数据)。

结果

所提出的 SBN 实现了 0.80 的曲线下面积(AUC),并且比基线机器学习方法有了相当大的改进。除了确认文献中的已知因素外,我们还发现“地区”(即郊区或城市地区)是一个重要因素,在三级医院(一级、二级和三级医院)中,与三级医院相比,曾在一级医院就诊的 COPD 患者更有可能发展成为未来的高成本患者。

结论

所提出的 SBN 模型不仅比许多基准机器学习方法获得了更高的预测准确性和更强的泛化能力,而且还通过使用贝叶斯网络来捕捉不同预测因子之间复杂的因果关系,同时结合了专家知识。此外,还开发了一个框架来建立历史轨迹与未来结果之间的关系,该框架还可以应用于其他时间数据,以建模不同的轨迹信息并预测其他结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验