Suppr超能文献

预测严重慢性阻塞性肺病恶化。利用行政数据开发人群监测方法。

Predicting Severe Chronic Obstructive Pulmonary Disease Exacerbations. Developing a Population Surveillance Approach with Administrative Data.

机构信息

Respiratory Evaluation Sciences Program, Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, and.

Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.

出版信息

Ann Am Thorac Soc. 2020 Sep;17(9):1069-1076. doi: 10.1513/AnnalsATS.202001-070OC.

Abstract

Automatic prediction algorithms based on routinely collected health data may be able to identify patients at high risk for hospitalizations related to acute exacerbations of chronic obstructive pulmonary disease (COPD). To conduct a proof-of-concept study of a population surveillance approach for identifying individuals at high risk of severe COPD exacerbations. We used British Columbia's administrative health databases (1997-2016) to identify patients with diagnosed COPD. We used data from the previous 6 months to predict the risk of severe exacerbation in the next 2 months after a randomly selected index date. We applied statistical and machine-learning algorithms for risk prediction (logistic regression, random forest, neural network, and gradient boosting). We used calibration plots and receiver operating characteristic curves to evaluate model performance based on a randomly chosen future date at least 1 year later (temporal validation). There were 108,433 patients in the development dataset and 113,786 in the validation dataset; of these, 1,126 and 1,136, respectively, were hospitalized for COPD within their outcome windows. The best prediction algorithm (gradient boosting) had an area under the receiver operating characteristic curve of 0.82 (95% confidence interval, 0.80-0.83), which was significantly higher than the corresponding value for the model with exacerbation history as the only predictor (current standard of care: 0.68). The predicted risk scores were well calibrated in the validation dataset. Imminent COPD-related hospitalizations can be predicted with good accuracy using administrative health data. This model may be used as a means to target high-risk patients for preventive exacerbation therapies.

摘要

基于常规收集的健康数据的自动预测算法可能能够识别出因慢性阻塞性肺疾病(COPD)急性加重而住院的高风险患者。为了对一种用于识别患有严重 COPD 加重风险个体的人群监测方法进行概念验证研究。我们使用不列颠哥伦比亚省的行政健康数据库(1997-2016 年)来识别诊断为 COPD 的患者。我们使用前 6 个月的数据来预测在随机选择的索引日期后接下来的 2 个月内严重加重的风险。我们应用统计和机器学习算法进行风险预测(逻辑回归、随机森林、神经网络和梯度提升)。我们使用校准图和接收者操作特征曲线来评估基于至少 1 年后的随机未来日期的模型性能(时间验证)。在开发数据集和验证数据集中分别有 108433 名患者和 113786 名患者;其中分别有 1126 名和 1136 名患者在其结果窗口内因 COPD 住院。最佳预测算法(梯度提升)的接收者操作特征曲线下面积为 0.82(95%置信区间,0.80-0.83),显著高于仅将加重史作为唯一预测因子的模型(当前标准治疗:0.68)。验证数据集中的预测风险评分具有良好的校准。使用行政健康数据可以很好地预测即将发生的 COPD 相关住院。该模型可用于针对高危患者进行预防加重治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验