Suppr超能文献

ApcD 和 ApcF 在集胞藻和聚球藻中的不同作用。

Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes.

机构信息

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.

出版信息

Biochim Biophys Acta Bioenerg. 2019 Jun 1;1860(6):488-498. doi: 10.1016/j.bbabio.2019.04.004. Epub 2019 Apr 25.

Abstract

The phycobilisome, the cyanobacterial light harvesting complex, is a huge phycobiliprotein containing extramembrane complex, formed by a core from which rods radiate. The phycobilisome has evolved to efficiently absorb sun energy and transfer it to the photosystems via the last energy acceptors of the phycobilisome, ApcD and ApcE. ApcF also affects energy transfer by interacting with ApcE. In this work we studied the role of ApcD and ApcF in energy transfer and state transitions in Synechococcus elongatus and Synechocystis PCC6803. Our results demonstrate that these proteins have different roles in both processes in the two strains. The lack of ApcD and ApcF inhibits state transitions in Synechocystis but not in S. elongatus. In addition, lack of ApcF decreases energy transfer to both photosystems only in Synechocystis, while the lack of ApcD alters energy transfer to photosystem I only in S. elongatus. Thus, conclusions based on results obtained in one cyanobacterial strain cannot be systematically transferred to other strains and the putative role(s) of phycobilisomes in state transitions need to be reconsidered.

摘要

藻胆体,即蓝细菌的光收集复合物,是一种巨大的藻胆蛋白,包含膜外复合物,由一个核心组成,杆从核心辐射。藻胆体已经进化到能够有效地吸收太阳能量,并通过藻胆体的最后能量受体 ApcD 和 ApcE 将其转移到光系统。ApcF 也通过与 ApcE 相互作用来影响能量转移。在这项工作中,我们研究了 ApcD 和 ApcF 在 Synechococcus elongatus 和 Synechocystis PCC6803 中的能量转移和状态转变中的作用。我们的结果表明,这两种蛋白在这两种菌株中的这两个过程中具有不同的作用。缺乏 ApcD 和 ApcF 抑制了 Synechocystis 中的状态转变,但不抑制 S. elongatus。此外,缺乏 ApcF 仅在 Synechocystis 中降低了向两个光系统的能量转移,而缺乏 ApcD 仅在 S. elongatus 中改变了向光系统 I 的能量转移。因此,基于在一种蓝细菌菌株中获得的结果得出的结论不能系统地转移到其他菌株,并且需要重新考虑藻胆体在状态转变中的潜在作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验