Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.
School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
J Am Chem Soc. 2023 May 31;145(21):11659-11668. doi: 10.1021/jacs.3c01799. Epub 2023 May 18.
The phycobilisome is the primary light-harvesting antenna in cyanobacterial and red algal oxygenic photosynthesis. It maintains near-unity efficiency of energy transfer to reaction centers despite relying on slow exciton hopping along a relatively sparse network of highly fluorescent phycobilin chromophores. How the complex maintains this high efficiency remains unexplained. Using a two-dimensional electronic spectroscopy polarization scheme that enhances energy transfer features, we directly watch energy flow in the phycobilisome complex of sp. PCC 6803 from the outer phycocyanin rods to the allophycocyanin core. The observed downhill flow of energy, previously hidden within congested spectra, is faster than timescales predicted by Förster hopping along single rod chromophores. We attribute the fast, 8 ps energy transfer to interactions between rod-core linker proteins and terminal rod chromophores, which facilitate unidirectionally downhill energy flow to the core. This mechanism drives the high energy transfer efficiency in the phycobilisome and suggests that linker protein-chromophore interactions have likely evolved to shape its energetic landscape.
藻胆体是蓝细菌和红藻光合作用的主要光捕获天线。尽管它依赖于沿着相对稀疏的高荧光藻胆素发色团网络进行缓慢的激子跳跃,但仍能保持近乎一致的能量转移到反应中心的效率。这种复合物如何保持这种高效率仍未得到解释。使用一种二维电子光谱偏振方案,该方案增强了能量转移特征,我们直接观察 sp. PCC 6803 的藻胆体复合物中能量从外周藻蓝蛋白棒到别藻蓝蛋白核心的流动。先前隐藏在密集光谱中的观察到的能量向下流动比沿着单个棒状发色团的Förster 跳跃预测的时间尺度更快。我们将快速的 8 ps 能量转移归因于棒芯连接蛋白和末端棒状发色团之间的相互作用,这促进了能量单向向下流向核心。这种机制推动了藻胆体中的高能量转移效率,并表明连接蛋白-发色团相互作用可能已经进化以塑造其能量景观。