Del Bene Janet E, Alkorta Ibon, Elguero José
Department of Chemistry , Youngstown State University , Youngstown , Ohio 44555 , United States.
Instituto de Química Médica (CSIC) , Juan de la Cierva, 3 , Madrid E-28006 , Spain.
J Phys Chem A. 2019 May 9;123(18):3992-3999. doi: 10.1021/acs.jpca.9b00553. Epub 2019 Apr 29.
Ab initio MP2/aug'-cc-pVTZ (where MP2 is Møller-Plesset perturbation theory) calculations have been carried out on four series of complexes, HXP:ClF:HCl, HXP:ClF:HF, HXP:ClCl:HF, and HXP:ClCl:HCl, to answer the question raised in the title of this paper. When X is F or Cl, binary complexes containing a P(V) molecule hydrogen bonded to an acid are found on all potential surfaces except HClP:ClF:HF, where an ion-pair complex exists. Ion-pair complexes also result from the optimization of HXP:ClF:HF for X = NC, CN, and H. Changing the central molecule from ClF to ClCl has a dramatic effect on the nature of the optimized complexes when the substituents are NC, CN, and H. On the potential surfaces HXP:ClCl:FH for X = NC and CN, open ternary complexes stabilized by a pnicogen bond and a hydrogen bond are found. Optimization of HP:ClCl:FH leads to an ion pair. For H(NC)P:ClCl:HCl and H(CN)P:ClCl:HCl, cyclic ternary complexes stabilized by pnicogen, halogen, and hydrogen bonds result from optimization. Optimization of HP:ClCl:HCl leads to a reaction in which HClP and a second HCl molecule are formed, and the resulting cyclic ternary complex is stabilized by two hydrogen bonds and a pnicogen bond. Thus, the type of complex resulting from the optimization of the starting ternary complex HXP:ClY:HZ depends on the nature of the central molecule ClF or ClCl, the terminal molecule HCl or HF, and the substituent X. It is not possible to simply turn around the terminal HZ molecule in complexes HXP:ClF:ZH for Z = F and Cl to give HXP:ClF:HZ, thereby replacing a halogen bond by a hydrogen bond. Complexes HXP:ClCl:HZ for X = NC and CN are stable complexes, but the corresponding halogen-bonded complexes HXP:ClCl:ZH are not.
已对四个系列的配合物HXP:ClF:HCl、HXP:ClF:HF、HXP:ClCl:HF和HXP:ClCl:HCl进行了从头算MP2/aug'-cc-pVTZ(其中MP2是莫勒-普莱塞特微扰理论)计算,以回答本文标题中提出的问题。当X为F或Cl时,除了存在离子对配合物的HClP:ClF:HF外,在所有势能面上都发现了含有与酸形成氢键的P(V)分子的二元配合物。当X = NC、CN和H时,HXP:ClF:HF的优化也会产生离子对配合物。当取代基为NC、CN和H时,将中心分子从ClF变为ClCl对优化后的配合物的性质有显著影响。在势能面HXP:ClCl:FH上,当X = NC和CN时,发现了通过一个氮键和一个氢键稳定的开放三元配合物。HP:ClCl:FH的优化产生一个离子对。对于H(NC)P:ClCl:HCl和H(CN)P:ClCl:HCl,优化会产生通过氮键、卤素键和氢键稳定的环状三元配合物。HP:ClCl:HCl的优化导致一个反应,其中形成了HClP和第二个HCl分子,所得的环状三元配合物通过两个氢键和一个氮键稳定。因此,起始三元配合物HXP:ClY:HZ优化后得到的配合物类型取决于中心分子ClF或ClCl的性质、末端分子HCl或HF的性质以及取代基X。对于Z = F和Cl的配合物HXP:ClF:ZH,不可能简单地将末端HZ分子翻转得到HXP:ClF:HZ,从而用氢键取代卤素键。对于X = NC和CN的配合物HXP:ClCl:HZ是稳定的配合物,但相应的卤素键合配合物HXP:ClCl:ZH则不是。