Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.
Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India.
J Cell Physiol. 2019 Nov;234(11):19223-19236. doi: 10.1002/jcp.28712. Epub 2019 Apr 29.
Mitochondrial dynamics play a critical role in deciding the fate of a cell under normal and diseased condition. Recent surge of studies indicate their regulatory role in meeting energy demands in renal cells making them critical entities in the progression of diabetic nephropathy. Diabetes is remarkably associated with abnormal fuel metabolism, a basis for free radical generation, which if left unchecked may devastate the mitochondria structurally and functionally. Impaired mitochondrial function and their aberrant accumulation have been known to be involved in the manifestation of diabetic nephropathy, indicating perturbed balance of mitochondrial dynamics, and mitochondrial turnover. Mitochondrial dynamics emphasize the critical role of mitochondrial fission proteins such as mitochondrial fission 1, dynamin-related protein 1 and mitochondrial fission factor and fusion proteins including mitofusin-1, mitofusin-2 and optic atrophy 1. Clearance of dysfunctional mitochondria is aided by translocation of autophagy machinery to the impaired mitochondria and subsequent activation of mitophagy regulating proteins PTEN-induced putative kinase 1 and Parkin, for which mitochondrial fission is a prior event. In this review, we discuss recent progression in our understanding of the molecular mechanisms targeting reactive oxygen species mediated alterations in mitochondrial energetics, mitophagy related disorders, impaired glucose transport, tubular atrophy, and renal cell death. The molecular cross talks linking autophagy and renoprotection through an intervention of 5'-AMP-activated protein kinase, mammalian target of rapamycin, and SIRT1 factors are also highlighted here, as in-depth exploration of these pathways may help in deriving therapeutic strategies for managing diabetes provoked end-stage renal disease.
线粒体动力学在决定正常和患病条件下细胞命运方面起着至关重要的作用。最近大量研究表明,它们在满足肾细胞能量需求方面具有调节作用,使它们成为糖尿病肾病进展的关键实体。糖尿病与异常燃料代谢密切相关,这是自由基产生的基础,如果不加控制,可能会导致线粒体结构和功能的严重破坏。已知受损的线粒体功能和它们的异常积累与糖尿病肾病的表现有关,这表明线粒体动力学和线粒体周转率的平衡受到干扰。线粒体动力学强调了线粒体分裂蛋白(如线粒体分裂蛋白 1、与 dynamin 相关的蛋白 1 和线粒体分裂因子)和融合蛋白(包括线粒体融合蛋白 1、线粒体融合蛋白 2 和视神经萎缩蛋白 1)的关键作用。通过自噬机制向受损线粒体的易位以及随后激活调节线粒体自噬的蛋白 PTEN 诱导的假定激酶 1 和 Parkin,有助于清除功能失调的线粒体,线粒体分裂是一个先前的事件。在这篇综述中,我们讨论了我们对靶向活性氧介导的线粒体能量改变的分子机制、与线粒体自噬相关的疾病、葡萄糖转运受损、肾小管萎缩和肾细胞死亡的理解的最新进展。通过干预 5'-AMP 激活蛋白激酶、哺乳动物雷帕霉素靶蛋白和 SIRT1 因子的自噬和肾保护的分子交叉对话也在这里得到了强调,因为对这些途径的深入探索可能有助于为管理糖尿病引起的终末期肾脏疾病制定治疗策略。