Faculty of Health Sciences and Brain & Mind Centre, University of Sydney, Sydney, Australia.
Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
J Magn Reson Imaging. 2019 Dec;50(6):1866-1872. doi: 10.1002/jmri.26769. Epub 2019 Apr 29.
Glutamate chemical exchange saturation transfer (GluCEST) imaging has been widely used in brain psychiatric disorders. Glutamate signal changes may help to evaluate the sleep-related disorders, and could be useful in diagnosis.
To evaluate signal changes in the hippocampus and cortex of a rat model of stress-induced sleep disturbance using GluCEST.
Prospective animal study.
Fourteen male Sprague-Dawley rats.
FIELD STRENGTH/SEQUENCE: 7.0T small bore MRI / fat-suppressed, turbo-rapid acquisition with relaxation enhancement (RARE) for CEST, and spin-echo, point-resolved proton MR spectroscopy ( H MRS).
Rats were divided into two groups: the stress-induced sleep-disturbance group (SSD, n = 7) and the control group (CTRL, n = 7), to evaluate and compare the cerebral glutamate signal changes. GluCEST data were quantified using a conventional magnetization transfer ratio asymmetry in the left- and right-side hippocampus and cortex. The correlation between GluCEST signal and glutamate concentrations, derived from H MRS, was evaluated.
Wilcoxon rank-sum test between CEST signals and multiparametric MR signals, Wilcoxon signed-rank test between CEST signals on the left and right hemispheres, and a correlation test between CEST signals and glutamate concentrations derived from H MRS.
Measured GluCEST signals showed significant differences between the two groups (left hippocampus; 4.23 ± 0.27% / 5.27 ± 0.42% [SSD / CTRL, P = 0.002], right hippocampus; 4.50 ± 0.44% / 5.04 ± 0.34% [P = 0.035], left cortex; 2.81 ± 0.38% / 3.56 ± 0.41% [P = 0.004], and right cortex; 2.95 ± 0.47% / 3.82 ± 0.26% [P = 0.003]). GluCEST signals showed positive correlation with glutamate concentrations (R = 0.312; P = 0.038).
GluCEST allowed the visualization of cerebral glutamate changes in rats subjected to sleep disturbance, and may yield valuable insights for interpreting alterations in cerebral biochemical information.
2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1866-1872.
谷氨酸化学交换饱和传递(GluCEST)成像已广泛应用于脑部精神疾病。谷氨酸信号变化可能有助于评估与睡眠相关的疾病,并且在诊断中可能有用。
使用 GluCEST 评估应激诱导睡眠障碍大鼠模型的海马体和皮质的信号变化。
前瞻性动物研究。
14 只雄性 Sprague-Dawley 大鼠。
磁场强度/序列:7.0T 小口径 MRI / 脂肪抑制,弛豫增强的涡轮快速采集(RARE)用于 CEST,自旋回波,点分辨质子磁共振波谱( 1 H MRS)。
将大鼠分为两组:应激诱导的睡眠障碍组(SSD,n = 7)和对照组(CTRL,n = 7),以评估和比较大脑谷氨酸信号变化。使用左、右侧海马体和皮质的常规磁化转移率不对称来量化 GluCEST 数据。评估 GluCEST 信号与来自 1 H MRS 的谷氨酸浓度之间的相关性。
CEST 信号与多参数 MR 信号之间的 Wilcoxon 秩和检验,左、右半球 CEST 信号之间的 Wilcoxon 符号秩检验,以及 CEST 信号与来自 1 H MRS 的谷氨酸浓度之间的相关检验。
两组之间的测量 GluCEST 信号显示出显著差异(左侧海马体;4.23 ± 0.27% / 5.27 ± 0.42% [SSD / CTRL,P = 0.002],右侧海马体;4.50 ± 0.44% / 5.04 ± 0.34% [P = 0.035],左侧皮质;2.81 ± 0.38% / 3.56 ± 0.41% [P = 0.004],右侧皮质;2.95 ± 0.47% / 3.82 ± 0.26% [P = 0.003])。GluCEST 信号与谷氨酸浓度呈正相关(R = 0.312;P = 0.038)。
GluCEST 允许可视化受睡眠障碍影响的大鼠大脑中谷氨酸的变化,并可能为解释大脑生化信息的变化提供有价值的见解。
2 技术功效:第 2 阶段 J. Magn. Reson. Imaging 2019;50:1866-1872.