Suppr超能文献

基于图像的激光扫描显微镜伪影去除。

Image-Based Artefact Removal in Laser Scanning Microscopy.

出版信息

IEEE Trans Biomed Eng. 2020 Jan;67(1):79-87. doi: 10.1109/TBME.2019.2908345. Epub 2019 Apr 29.

Abstract

Recent developments in laser scanning microscopy have greatly extended its applicability in cancer imaging beyond the visualization of complex biology, and opened up the possibility of quantitative analysis of inherently dynamic biological processes. However, the physics of image acquisition intrinsically means that image quality is subject to a tradeoff between a number of imaging parameters, including resolution, signal-to-noise ratio, and acquisition speed. We address the problem of geometric distortion, in particular, jaggedness artefacts that are caused by the variable motion of the microscope laser, by using a combination of image processing techniques. Image restoration methods have already shown great potential for post-acquisition image analysis. The performance of our proposed image restoration technique was first quantitatively evaluated using phantom data with different textures, and then qualitatively assessed using in vivo biological imaging data. In both cases, the presented method, comprising a combination of image registration and filtering, is demonstrated to have substantial improvement over state-of-the-art microscopy acquisition methods.

摘要

近年来,激光扫描显微镜技术的发展极大地扩展了其在癌症成像中的应用范围,不仅可以观察复杂的生物学结构,还可以对固有动态生物过程进行定量分析。然而,图像采集的物理性质本质上意味着图像质量在许多成像参数之间存在权衡,包括分辨率、信噪比和采集速度。我们通过结合图像处理技术来解决几何变形问题,特别是由显微镜激光的可变运动引起的锯齿状伪影问题。图像恢复方法已经在获取后的图像分析中显示出了巨大的潜力。我们提出的图像恢复技术的性能首先使用具有不同纹理的体模数据进行定量评估,然后使用体内生物成像数据进行定性评估。在这两种情况下,所提出的方法,包括图像配准和滤波的组合,都被证明比最先进的显微镜采集方法有了实质性的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验