Suppr超能文献

小动物多光子活体显微镜:运动伪影的挑战与技术解决方案。

Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions.

机构信息

Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada.

Faculty of Pharmacy, Université Laval, Quebec, Canada.

出版信息

J Microsc. 2020 Apr;278(1):3-17. doi: 10.1111/jmi.12880. Epub 2020 Mar 5.

Abstract

Since its invention 29 years ago, two-photon laser-scanning microscopy has evolved from a promising imaging technique, to an established widely available imaging modality used throughout the biomedical research community. The establishment of two-photon microscopy as the preferred method for imaging fluorescently labelled cells and structures in living animals can be attributed to the biophysical mechanism by which the generation of fluorescence is accomplished. The use of powerful lasers capable of delivering infrared light pulses within femtosecond intervals, facilitates the nonlinear excitation of fluorescent molecules only at the focal plane and determines by objective lens position. This offers numerous benefits for studies of biological samples at high spatial and temporal resolutions with limited photo-damage and superior tissue penetration. Indeed, these attributes have established two-photon microscopy as the ideal method for live-animal imaging in several areas of biology and have led to a whole new field of study dedicated to imaging biological phenomena in intact tissues and living organisms. However, despite its appealing features, two-photon intravital microscopy is inherently limited by tissue motion from heartbeat, respiratory cycles, peristalsis, muscle/vascular tone and physiological functions that change tissue geometry. Because these movements impede temporal and spatial resolution, they must be properly addressed to harness the full potential of two-photon intravital microscopy and enable accurate data analysis and interpretation. In addition, the sources and features of these motion artefacts are varied, sometimes unpredictable and unique to specific organs and multiple complex strategies have previously been devised to address them. This review will discuss these motion artefacts requirement and technical solutions for their correction and after intravital two-photon microscopy.

摘要

自 29 年前发明以来,双光子激光扫描显微镜已从一种有前途的成像技术发展成为一种成熟的、广泛应用于生物医学研究领域的成像模式。双光子显微镜作为在活体动物中对荧光标记细胞和结构进行成像的首选方法的确立,可以归因于荧光产生的生物物理机制。使用能够在飞秒间隔内传递红外光脉冲的强大激光,仅在焦平面内并通过物镜位置来实现荧光分子的非线性激发。这为在高时空分辨率下对生物样本进行研究提供了许多好处,同时还具有有限的光损伤和更好的组织穿透性。事实上,这些特性使双光子显微镜成为生物学多个领域活体动物成像的理想方法,并催生了一个全新的研究领域,致力于对完整组织和活体生物中的生物现象进行成像。然而,尽管具有吸引力的特性,双光子活体显微镜仍然受到组织运动的限制,这些组织运动来自心跳、呼吸循环、蠕动、肌肉/血管张力以及改变组织几何形状的生理功能。由于这些运动阻碍了时间和空间分辨率,因此必须正确处理这些运动,以充分发挥双光子活体显微镜的潜力,并实现准确的数据分析和解释。此外,这些运动伪影的来源和特征多种多样,有时是不可预测的,并且特定于特定器官,以前已经设计了多种复杂的策略来解决这些问题。本综述将讨论这些运动伪影的要求以及用于校正活体双光子显微镜的技术解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1591/7187339/cdb94d74db8f/JMI-278-3-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验