Suppr超能文献

伴侣蛋白 TRiC/CCT 支持果蝇有丝分裂退出和进入内循环。

Chaperonin TRiC/CCT supports mitotic exit and entry into endocycle in Drosophila.

机构信息

School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.

Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.

出版信息

PLoS Genet. 2019 Apr 29;15(4):e1008121. doi: 10.1371/journal.pgen.1008121. eCollection 2019 Apr.

Abstract

Endocycle is a commonly observed cell cycle variant through which cells undergo repeated rounds of genome DNA replication without mitosis. Endocycling cells arise from mitotic cells through a switch of the cell cycle mode, called the mitotic-to-endocycle switch (MES), to initiate cell growth and terminal differentiation. However, the underlying regulatory mechanisms of MES remain unclear. Here we used the Drosophila steroidogenic organ, called the prothoracic gland (PG), to study regulatory mechanisms of MES, which is critical for the PG to upregulate biosynthesis of the steroid hormone ecdysone. We demonstrate that PG cells undergo MES through downregulation of mitotic cyclins, which is mediated by Fizzy-related (Fzr). Moreover, we performed a RNAi screen to further elucidate the regulatory mechanisms of MES, and identified the evolutionarily conserved chaperonin TCP-1 ring complex (TRiC) as a novel regulator of MES. Knockdown of TRiC subunits in the PG caused a prolonged mitotic period, probably due to impaired nuclear translocation of Fzr, which also caused loss of ecdysteroidogenic activity. These results indicate that TRiC supports proper MES and endocycle progression by regulating Fzr folding. We propose that TRiC-mediated protein quality control is a conserved mechanism supporting MES and endocycling, as well as subsequent terminal differentiation.

摘要

内圈是一种常见的细胞周期变体,通过该变体,细胞在没有有丝分裂的情况下经历多次基因组 DNA 复制。内圈细胞通过细胞周期模式的转换,即有丝分裂到内圈的转换(MES),从有丝分裂细胞中产生,从而启动细胞生长和终末分化。然而,MES 的潜在调节机制尚不清楚。在这里,我们使用果蝇的类固醇生成器官,即前胸腺(PG),来研究 MES 的调节机制,这对于 PG 上调类固醇激素蜕皮激素的生物合成至关重要。我们证明 PG 细胞通过下调有丝分裂周期蛋白来经历 MES,这是由 Fizzy-related (Fzr) 介导的。此外,我们进行了 RNAi 筛选,以进一步阐明 MES 的调节机制,并确定了进化上保守的伴侣蛋白 TCP-1 环复合物(TRiC)作为 MES 的一个新调节因子。PG 中的 TRiC 亚基的敲低导致有丝分裂期延长,可能是由于 Fzr 的核易位受损,这也导致了蜕皮激素生成活性的丧失。这些结果表明,TRiC 通过调节 Fzr 的折叠来支持适当的 MES 和内圈进展。我们提出,TRiC 介导的蛋白质质量控制是支持 MES 和内圈以及随后的终末分化的保守机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d0e/6508744/80533a8b6d19/pgen.1008121.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验