Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
PLoS One. 2019 Apr 29;14(4):e0216253. doi: 10.1371/journal.pone.0216253. eCollection 2019.
Protein self-assembling is studied under the light of the Biological Membrane model. To this purpose we define a simplified formulation of hydrophobic interaction energy in analogy with electrostatic energy stored in an electric dipole. Self-assembly is considered to be the result of the balanced influence of electrostatic and hydrophobic interactions, limited by steric hindrance as a consequence of the relative proximity of their components. Our analysis predicts the type of interaction that drives an assembly. We study the growth of both electrostatic and hydrophobic energies stored by a protein system as it self-assembles. Each type of assembly is studied by using two examples, PDBid 2OM3 (hydrophobic) and PDBid 3ZEE (electrostatic). Other systems are presented to show the application of our procedure. We also study the relative orientation of the monomers constituting the first dimer of a protein assembly to check whether their relative position provides the optimal interaction energy (energy minimum). It is shown that the inherent orientation of the dimers corresponds to the optimum energy (energy minimum) of assembly compatible with steric limitations. These results confirm and refine our Biological Membrane model of protein self-assembly valid for all open and closed systems.
蛋白质自组装是在生物膜模型的指导下进行研究的。为此,我们定义了一种简化的疏水相互作用能量公式,类似于电偶极子中储存的静电能。自组装被认为是静电和疏水相互作用平衡影响的结果,受到相对接近其组件的空间位阻的限制。我们的分析预测了驱动组装的相互作用类型。我们研究了蛋白质系统自组装时储存的静电和疏水能量的增长。使用两个示例(PDBid 2OM3(疏水)和 PDBid 3ZEE(静电))研究每种类型的组装。还介绍了其他系统以展示我们的程序的应用。我们还研究了构成蛋白质组装第一二聚体的单体的相对取向,以检查它们的相对位置是否提供最佳相互作用能(能量最小值)。结果表明,二聚体的固有取向与符合空间位阻限制的组装的最佳能量(能量最小值)相对应。这些结果证实并细化了我们适用于所有开放和封闭系统的蛋白质自组装的生物膜模型。