Suppr超能文献

流感 A 病毒模拟纳米颗粒触发选择性细胞摄取。

Influenza A virus mimetic nanoparticles trigger selective cell uptake.

机构信息

Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany.

Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany

出版信息

Proc Natl Acad Sci U S A. 2019 May 14;116(20):9831-9836. doi: 10.1073/pnas.1902563116. Epub 2019 Apr 29.

Abstract

Poor target cell specificity is currently a major shortcoming of nanoparticles (NPs) used for biomedical applications. It causes significant material loss to off-target sites and poor availability at the intended delivery site. To overcome this limitation, we designed particles that identify cells in a virus-like manner. As a blueprint, we chose a mechanism typical of influenza A virus particles in which ectoenzymatic hemagglutinin activation by target cells is a mandatory prerequisite for binding to a secondary target structure that finally confirms cell identity and allows for uptake of the virus. We developed NPs that probe mesangial cells for the presence of angiotensin-converting enzyme on their surface using angiotensin I (Ang-I) as a proligand. This initial interaction enzymatically transforms Ang-I to a secondary ligand angiotensin II (Ang-II) that has the potential to bind in a second stage to Ang-II type-1 receptor (AT1R). The presence of the receptor confirms the target cell identity and triggers NP uptake via endocytosis. Our virus-mimetic NPs showed outstanding target-cell affinity with picomolar avidities and were able to selectively identify these cells in the presence of 90% off-target cells that carried only the AT1R. Our results demonstrate that the design of virus-mimetic cell interactive NPs is a valuable strategy to enhance NP specificity for therapeutic and diagnostic applications. Our set of primary and secondary targets is particularly suited for the identification of mesangial cells that play a pivotal role in diabetic nephropathy, one of the leading causes of renal failure, for which currently no treatment exists.

摘要

目前,用于生物医学应用的纳米颗粒(NPs)的主要缺点是靶细胞特异性差。这会导致大量物质损失到非靶部位,并且在预期的给药部位的可用性差。为了克服这一限制,我们设计了以类似于病毒的方式识别细胞的颗粒。作为蓝图,我们选择了一种典型的流感 A 病毒颗粒的机制,其中靶细胞的外切酶血凝素的激活是与二级靶结构结合的强制性前提,最终确认细胞身份并允许病毒进入。我们开发了 NPs,这些 NPs 使用血管紧张素 I(Ang-I)作为前配体,探测系膜细胞表面是否存在血管紧张素转换酶。这种初始相互作用通过酶促转化将 Ang-I 转化为具有在第二阶段与血管紧张素 II 型 1 受体(AT1R)结合潜力的二级配体血管紧张素 II(Ang-II)。受体的存在确认了靶细胞的身份,并通过内吞作用触发 NP 摄取。我们的病毒模拟 NPs 表现出出色的靶细胞亲和力,具有皮摩尔级的亲和力,并且能够在存在仅携带 AT1R 的 90%非靶细胞的情况下选择性地识别这些细胞。我们的结果表明,设计病毒模拟细胞相互作用的 NPs 是增强 NP 治疗和诊断应用特异性的一种有价值的策略。我们的一组初级和次级靶标特别适合识别系膜细胞,系膜细胞在糖尿病肾病中起关键作用,糖尿病肾病是肾衰竭的主要原因之一,目前尚无治疗方法。

相似文献

1
Influenza A virus mimetic nanoparticles trigger selective cell uptake.流感 A 病毒模拟纳米颗粒触发选择性细胞摄取。
Proc Natl Acad Sci U S A. 2019 May 14;116(20):9831-9836. doi: 10.1073/pnas.1902563116. Epub 2019 Apr 29.

引用本文的文献

6
Use of nanotechnology in combating coronavirus.纳米技术在对抗冠状病毒中的应用。
3 Biotech. 2021 Jul;11(7):358. doi: 10.1007/s13205-021-02905-6. Epub 2021 Jun 28.
9
Biomedical nanoparticle design: What we can learn from viruses.生物医学纳米颗粒设计:我们能从病毒中学到什么。
J Control Release. 2021 Jan 10;329:552-569. doi: 10.1016/j.jconrel.2020.09.045. Epub 2020 Sep 30.

本文引用的文献

7
The Concise Guide to PHARMACOLOGY 2015/16: Enzymes.《2015/16药理学简明指南:酶》
Br J Pharmacol. 2015 Dec;172(24):6024-109. doi: 10.1111/bph.13354.
8
Multivalent nanoparticles bind the retinal and choroidal vasculature.多价纳米颗粒结合视网膜和脉络膜血管。
J Control Release. 2015 Dec 28;220(Pt A):265-274. doi: 10.1016/j.jconrel.2015.10.033. Epub 2015 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验