Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan.
Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, 40227, Taiwan.
Plant Cell Rep. 2019 Aug;38(8):915-926. doi: 10.1007/s00299-019-02412-2. Epub 2019 Apr 29.
Transgenic callus and roots of ice plant with altered SnRK1 function were established using Agrobacterium-mediated transformation. The role of McSnRK1 in controlling Na influx and Na/K ratio was demonstrated. SnRK1 kinases (SNF1-related protein kinase1) control metabolic adaptation during energy deprivation and regulate protective mechanisms against environmental stress. Yeast SNF1 activates a P-type ATPase, the Na exclusion pump, under glucose starvation. The involvement of plant SnRK1 in salt stress response is largely unknown. We previously identified a salt-induced McSnRK1 in the halophyte ice plant (Mesembryanthemum crystallinum). In the current study, the function of McSnRK1 in salt tolerance was analyzed in transgenic cultured cells and roots of ice plant. Ice plant callus constitutively expressed a high level of McSnRK1 and introducing the full-length McSnRK1 did not alter the Na/K ratio at 24 h after 200 mM NaCl treatment. However, interfering with McSnRK1 activity by introducing a truncate McSnRK1 to produce a dominant-negative form of McSnRK1 increased cellular Na accumulation and Na/K ratio. As a result, the growth of cultured cells diminished under salt treatment. Hydroponically grown ice plants with roots expressing full-length McSnRK1 had better growth and lowered Na/K ratio compared to the wild-type or vector-only plants. Roots expressing a truncate McSnRK1 had reduced growth and high Na/K ratio under 400 mM NaCl treatment. The changes in Na/K ratio in transgenic cells and whole plants demonstrated the function of SnRK1 in controlling Na flux and maintaining Na/K homeostasis under salinity. The Agrobacterium-mediated transformation system could be a versatile tool for functional analysis of genes involved in salt tolerance in the ice plant.
利用农杆菌介导的转化技术,建立了 SnRK1 功能改变的冰叶日中花转化愈伤组织和根。证明了 McSnRK1 在控制 Na 流入和 Na/K 比中的作用。SnRK1 激酶(SNF1 相关蛋白激酶 1)在能量剥夺期间控制代谢适应,并调节对环境胁迫的保护机制。酵母 SNF1 在葡萄糖饥饿下激活 P 型 ATP 酶,即 Na 外排泵。植物 SnRK1 在盐胁迫反应中的参与在很大程度上尚不清楚。我们之前在盐生植物冰叶日中花(Mesembryanthemum crystallinum)中鉴定出一种盐诱导的 McSnRK1。在本研究中,分析了冰叶日中花转基因培养细胞和根中 McSnRK1 的耐盐功能。冰叶日中花愈伤组织持续高水平表达 McSnRK1,在 200mM NaCl 处理 24 小时后,引入全长 McSnRK1 并未改变 Na/K 比。然而,通过引入截断的 McSnRK1 产生 McSnRK1 的显性负形式来干扰 McSnRK1 的活性,增加了细胞内 Na 积累和 Na/K 比。结果,盐处理下培养细胞的生长受到抑制。与野生型或空载植物相比,表达全长 McSnRK1 的冰叶日中花水培根具有更好的生长和较低的 Na/K 比。在 400mM NaCl 处理下,表达截断 McSnRK1 的根生长减少,Na/K 比升高。转基因细胞和整个植物中 Na/K 比的变化表明,SnRK1 在控制盐胁迫下的 Na 通量和维持 Na/K 平衡方面具有功能。农杆菌介导的转化系统可为冰叶日中花耐盐相关基因的功能分析提供一种通用工具。