Suppr超能文献

脑缺血/再灌注损伤中线粒体复合物 I 通过氧化还原依赖性丢失黄素。

Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury.

机构信息

1Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York.

2Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York.

出版信息

Antioxid Redox Signal. 2019 Sep 20;31(9):608-622. doi: 10.1089/ars.2018.7693. Epub 2019 Jul 1.

Abstract

Brain ischemia/reperfusion (I/R) is associated with impairment of mitochondrial function. However, the mechanisms of mitochondrial failure are not fully understood. This work was undertaken to determine the mechanisms and time course of mitochondrial energy dysfunction after reperfusion following neonatal brain hypoxia-ischemia (HI) in mice. HI/reperfusion decreased the activity of mitochondrial complex I, which was recovered after 30 min of reperfusion and then declined again after 1 h. Decreased complex I activity occurred in parallel with a loss in the content of noncovalently bound membrane flavin mononucleotide (FMN). FMN dissociation from the enzyme is caused by succinate-supported reverse electron transfer. Administration of FMN precursor riboflavin before HI/reperfusion was associated with decreased infarct volume, attenuation of neurological deficit, and preserved complex I activity compared with vehicle-treated mice. , the rate of FMN release during oxidation of succinate was not affected by the oxygen level and amount of endogenously produced reactive oxygen species. Our data suggest that dissociation of FMN from mitochondrial complex I may represent a novel mechanism of enzyme inhibition defining respiratory chain failure in I/R. Strategies preventing FMN release during HI and reperfusion may limit the extent of energy failure and cerebral HI injury. The proposed mechanism of acute I/R-induced complex I impairment is distinct from the generally accepted mechanism of oxidative stress-mediated I/R injury. Our study is the first to highlight a critical role of mitochondrial complex I-FMN dissociation in the development of HI-reperfusion injury of the neonatal brain. 31, 608-622.

摘要

脑缺血/再灌注(I/R)与线粒体功能障碍有关。然而,线粒体衰竭的机制尚不完全清楚。本研究旨在确定新生鼠脑缺氧缺血(HI)后再灌注时线粒体能量功能障碍的机制和时程。HI/再灌注降低了线粒体复合物 I 的活性,这种活性在再灌注 30 分钟后恢复,然后在 1 小时后再次下降。复合物 I 活性的降低与非共价结合的膜黄素单核苷酸(FMN)含量的丧失平行发生。FMN 从酶上的解离是由琥珀酸支持的反向电子转移引起的。HI/再灌注前给予 FMN 前体核黄素与对照组相比,可减少梗死体积、减轻神经功能缺损,并保持复合物 I 活性。此外,在氧水平和内源性产生的活性氧的数量不影响琥珀酸氧化过程中 FMN 的释放率。我们的数据表明,FMN 从线粒体复合物 I 上的解离可能代表一种新的酶抑制机制,定义了 I/R 中的呼吸链衰竭。在 HI 和再灌注期间防止 FMN 释放的策略可能会限制能量衰竭和脑 HI 损伤的程度。所提出的急性 I/R 诱导的复合物 I 损伤的机制与普遍接受的氧化应激介导的 I/R 损伤机制不同。本研究首次强调了线粒体复合物 I-FMN 解离在新生鼠脑 HI 再灌注损伤中的关键作用。Free Radic Biol Med. 2012 Nov 15;53(10):1934-43.

相似文献

引用本文的文献

6
Sex-dependent differences in macaque brain mitochondria.雄猴和雌猴大脑线粒体的性别依赖性差异。
Biochim Biophys Acta Bioenerg. 2024 Nov 1;1865(4):149494. doi: 10.1016/j.bbabio.2024.149494. Epub 2024 Jul 1.
9
Regulation of respiratory complex I assembly by FMN cofactor targeting.FMN 辅因子靶向调控呼吸复合物 I 组装。
Redox Biol. 2024 Feb;69:103001. doi: 10.1016/j.redox.2023.103001. Epub 2023 Dec 20.

本文引用的文献

4
Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain.缺氧缺血后未成熟脑中线粒体复合物 I 的失活。
J Cereb Blood Flow Metab. 2019 Sep;39(9):1790-1802. doi: 10.1177/0271678X18770331. Epub 2018 Apr 9.
8
A subcellular map of the human proteome.人类蛋白质组的亚细胞图谱。
Science. 2017 May 26;356(6340). doi: 10.1126/science.aal3321. Epub 2017 May 11.
9
Atomic structure of the entire mammalian mitochondrial complex I.完整哺乳动物线粒体复合物I的原子结构。
Nature. 2016 Oct 20;538(7625):406-410. doi: 10.1038/nature19794. Epub 2016 Sep 5.
10
Reversible FMN dissociation from Escherichia coli respiratory complex I.大肠杆菌呼吸链复合体I中黄素单核苷酸的可逆解离
Biochim Biophys Acta. 2016 Nov;1857(11):1777-1785. doi: 10.1016/j.bbabio.2016.08.008. Epub 2016 Aug 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验