Suppr超能文献

黄素和谷胱甘肽在脑缺血/再灌注损伤中复合 I 介导线粒体生物能量衰竭中的关键作用。

Critical Role of Flavin and Glutathione in Complex I-Mediated Bioenergetic Failure in Brain Ischemia/Reperfusion Injury.

机构信息

From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.).

School of Biological Sciences, Queen's University Belfast, United Kingdom (A.S., A.G.).

出版信息

Stroke. 2018 May;49(5):1223-1231. doi: 10.1161/STROKEAHA.117.019687. Epub 2018 Apr 11.

Abstract

BACKGROUND AND PURPOSE

Ischemic brain injury is characterized by 2 temporally distinct but interrelated phases: ischemia (primary energy failure) and reperfusion (secondary energy failure). Loss of cerebral blood flow leads to decreased oxygen levels and energy crisis in the ischemic area, initiating a sequence of pathophysiological events that after reoxygenation lead to ischemia/reperfusion (I/R) brain damage. Mitochondrial impairment and oxidative stress are known to be early events in I/R injury. However, the biochemical mechanisms of mitochondria damage in I/R are not completely understood.

METHODS

We used a mouse model of transient focal cerebral ischemia to investigate acute I/R-induced changes of mitochondrial function, focusing on mechanisms of primary and secondary energy failure.

RESULTS

Ischemia induced a reversible loss of flavin mononucleotide from mitochondrial complex I leading to a transient decrease in its enzymatic activity, which is rapidly reversed on reoxygenation. Reestablishing blood flow led to a reversible oxidative modification of mitochondrial complex I thiol residues and inhibition of the enzyme. Administration of glutathione-ethyl ester at the onset of reperfusion prevented the decline of complex I activity and was associated with smaller infarct size and improved neurological outcome, suggesting that decreased oxidation of complex I thiols during I/R-induced oxidative stress may contribute to the neuroprotective effect of glutathione ester.

CONCLUSIONS

Our results unveil a key role of mitochondrial complex I in the development of I/R brain injury and provide the mechanistic basis for the well-established mitochondrial dysfunction caused by I/R. Targeting the functional integrity of complex I in the early phase of reperfusion may provide a novel therapeutic strategy to prevent tissue injury after stroke.

摘要

背景与目的

缺血性脑损伤的特征是两个时间上不同但相互关联的阶段:缺血(原发性能量衰竭)和再灌注(继发性能量衰竭)。脑血流的丧失导致缺血区的氧水平降低和能量危机,引发一系列病理生理事件,再灌注后导致缺血/再灌注(I/R)脑损伤。线粒体损伤和氧化应激已知是 I/R 损伤的早期事件。然而,I/R 损伤中线粒体损伤的生化机制尚不完全清楚。

方法

我们使用短暂性局灶性脑缺血的小鼠模型来研究急性 I/R 诱导的线粒体功能变化,重点研究原发性和继发性能量衰竭的机制。

结果

缺血导致线粒体复合物 I 的黄素单核苷酸可逆性丢失,导致其酶活性短暂下降,再灌注时迅速逆转。恢复血流导致线粒体复合物 I 巯基残基的可逆氧化修饰和酶抑制。再灌注开始时给予谷胱甘肽乙酯可防止复合物 I 活性下降,并与较小的梗死体积和改善的神经功能结局相关,表明 I/R 诱导的氧化应激中复合物 I 巯基的氧化减少可能有助于谷胱甘肽乙酯的神经保护作用。

结论

我们的结果揭示了线粒体复合物 I 在 I/R 脑损伤发展中的关键作用,并为 I/R 引起的已确立的线粒体功能障碍提供了机制基础。在再灌注的早期阶段靶向复合物 I 的功能完整性可能为预防中风后的组织损伤提供一种新的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36f4/5916474/ee2520cc5ad6/str-49-1223-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验