Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark.
GlycoDisplay ApS, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
Nat Commun. 2019 Apr 30;10(1):1785. doi: 10.1038/s41467-019-09809-3.
Lysosomal replacement enzymes are essential therapeutic options for rare congenital lysosomal enzyme deficiencies, but enzymes in clinical use are only partially effective due to short circulatory half-life and inefficient biodistribution. Replacement enzymes are primarily taken up by cell surface glycan receptors, and glycan structures influence uptake, biodistribution, and circulation time. It has not been possible to design and systematically study effects of different glycan features. Here we present a comprehensive gene engineering screen in Chinese hamster ovary cells that enables production of lysosomal enzymes with N-glycans custom designed to affect key glycan features guiding cellular uptake and circulation. We demonstrate distinct circulation time and organ distribution of selected glycoforms of α-galactosidase A in a Fabry disease mouse model, and find that an α2-3 sialylated glycoform designed to eliminate uptake by the mannose 6-phosphate and mannose receptors exhibits improved circulation time and targeting to hard-to-reach organs such as heart. The developed design matrix and engineered CHO cell lines enables systematic studies towards improving enzyme replacement therapeutics.
溶酶体替代酶是治疗罕见先天性溶酶体酶缺乏症的重要治疗选择,但由于循环半衰期短和生物分布效率低,临床使用的酶仅部分有效。替代酶主要通过细胞表面聚糖受体被摄取,而聚糖结构影响摄取、生物分布和循环时间。由于无法设计和系统地研究不同聚糖特征的影响,因此一直存在问题。在这里,我们在中华仓鼠卵巢细胞中进行了一项全面的基因工程筛选,该筛选能够产生具有 N-聚糖的溶酶体酶,这些聚糖可专门设计以影响指导细胞摄取和循环的关键聚糖特征。我们在法布里病小鼠模型中证明了 α-半乳糖苷酶 A 的选定糖型具有明显不同的循环时间和器官分布,并且发现设计为消除通过甘露糖 6-磷酸和甘露糖受体摄取的 α2-3 唾液酸化糖型具有改善的循环时间和靶向难以到达的器官(如心脏)的作用。开发的设计矩阵和工程化 CHO 细胞系使系统研究改善酶替代治疗成为可能。