Department of Chemistry , Yale University , P.O Box 208107, New Haven , Connecticut 06520-8107 , United States.
Department of Chemistry , University of Washington , Box 351700 Seattle , Washington 98195-1700 , United States.
J Am Chem Soc. 2019 May 22;141(20):8315-8326. doi: 10.1021/jacs.9b02640. Epub 2019 May 13.
The catalytic reduction of O to HO is important for energy transduction in both synthetic and natural systems. Herein, we report a kinetic and thermochemical study of the oxygen reduction reaction (ORR) catalyzed by iron tetraphenylporphyrin (Fe(TPP)) in N, N'-dimethylformamide using decamethylferrocene as a soluble reductant and para-toluenesulfonic acid ( pTsOH) as the proton source. This work identifies and characterizes catalytic intermediates and their thermochemistry, providing a detailed mechanistic understanding of the system. Specifically, reduction of the ferric porphyrin, [Fe(TPP)] forms the ferrous porphyrin, Fe(TPP), which binds O reversibly to form the ferric-superoxide porphyrin complex, Fe(TPP)(O). The temperature dependence of both the electron transfer and O binding equilibrium constants has been determined. Kinetic studies over a range of concentrations and temperatures show that the catalyst resting state changes during the course of each catalytic run, necessitating the use of global kinetic modeling to extract rate constants and kinetic barriers. The rate-determining step in oxygen reduction is the protonation of Fe(TPP)(O) by pTsOH, which proceeds with a substantial kinetic barrier. Computational studies indicate that this barrier for proton transfer arises from an unfavorable preassociation of the proton donor with the superoxide adduct and a transition state that requires significant desolvation of the proton donor. Together, these results are the first example of oxygen reduction by iron tetraphenylporphyrin where the pre-equilibria among ferric, ferrous, and ferric-superoxide intermediates have been quantified under catalytic conditions. This work gives a generalizable model for the mechanism of iron porphyrin-catalyzed ORR and provides an unusually complete mechanistic study of an ORR reaction. More broadly, this study also highlights the kinetic challenges for proton transfer to catalytic intermediates in organic media.
氧气到 HO 的催化还原对于合成和自然体系中的能量传递都很重要。在此,我们报告了铁四苯基卟啉(Fe(TPP))在 N, N'-二甲基甲酰胺中催化氧还原反应(ORR)的动力学和热化学研究,使用十甲基二茂铁作为可溶性还原剂和对甲苯磺酸(pTsOH)作为质子源。这项工作确定并表征了催化中间体及其热化学性质,为该体系提供了详细的机理理解。具体来说,铁卟啉[Fe(TPP)]的还原形成亚铁卟啉Fe(TPP),它可逆地与 O 结合形成铁超氧化物卟啉配合物 Fe(TPP)(O)。已经确定了电子转移和 O 结合平衡常数的温度依赖性。在一系列浓度和温度下的动力学研究表明,催化剂的静止状态在每个催化循环过程中都会发生变化,这需要使用全局动力学建模来提取速率常数和动力学障碍。氧还原的速控步骤是 pTsOH 对 Fe(TPP)(O)的质子化,这一过程伴随着相当大的动力学障碍。计算研究表明,质子转移的这个障碍源于质子供体与超氧化物加合物的不利预缔合以及需要质子供体大量去溶剂化的过渡态。总的来说,这些结果是铁四苯基卟啉催化氧气还原的第一个实例,其中在催化条件下已经量化了铁、亚铁和铁超氧化物中间体之间的预平衡。这项工作为铁卟啉催化 ORR 的机理提供了一个可推广的模型,并对 ORR 反应进行了异常完整的机理研究。更广泛地说,这项研究还突出了质子向有机介质中催化中间体转移的动力学挑战。