Department of Chemistry, Yale University , New Haven, Connecticut 06511, United States.
J Am Chem Soc. 2017 Aug 2;139(30):10312-10319. doi: 10.1021/jacs.7b03562. Epub 2017 Jul 21.
Multiple-site concerted proton-electron transfer (MS-CPET) reactions were studied in a three-component system. 1-Hydroxy-2,2,6,6-tetramethylpiperidine (TEMPOH) was oxidized to the stable radical TEMPO by electron transfer to ferrocenium oxidants coupled to proton transfer to various pyridine bases. These MS-CPET reactions contrast with the usual reactivity of TEMPOH by hydrogen atom transfer (HAT) to a single e/H acceptor. The three-component reactions proceed by pre-equilibrium formation of a hydrogen-bonded adduct between TEMPOH and the pyridine base, and the adduct is then oxidized by the ferrocenium in a bimolecular MS-CPET step. The second-order rate constants, measured using stopped-flow kinetic techniques, spanned 4 orders of magnitude. An advantage of this system is that the MS-CPET driving force could be independently varied by changing either the pK of the base or the reduction potential (E°) of the oxidant. Changes in ΔG° from either source had the same effect on the MS-CPET rate constants, and a combined Brønsted plot of ln(k) vs ln(K) was linear with a slope of 0.46. These results imply a synchronous concerted mechanism, in which the proton and electron transfer components of the CPET process make equal contributions to the rate constants. The only outliers to the Brønsted correlation are the reactions with sterically hindered pyridines, which apparently hinder the close approach of proton donor and acceptor that facilitates MS-CPET. These three-component reactions are compared with a related HAT reaction of TEMPOH, with the 2,4,6-tri-tert-butylphenoxyl radical. The MS-CPET and HAT oxidations of TEMPOH at the same driving force occurred with similar rate constants. While this is an imperfect comparison, the data suggest that the separation of the proton and electron to different reagents does not significantly inhibit the proton-coupled electron transfer process.
在一个三组分体系中研究了多位点协同质子-电子转移 (MS-CPET) 反应。1-羟基-2,2,6,6-四甲基哌啶 (TEMPOH) 通过电子转移到与各种吡啶碱质子转移偶联的 ferrocenium 氧化剂被氧化为稳定的自由基 TEMPO。这些 MS-CPET 反应与 TEMPOH 通过氢原子转移 (HAT) 到单个电子/氢受体的通常反应性形成对比。三组分反应通过 TEMPOH 和吡啶碱之间氢键加合物的预平衡形成进行,然后加合物在双分子 MS-CPET 步骤中被 ferrocenium 氧化。使用停流动力学技术测量的二级速率常数跨越了 4 个数量级。该系统的一个优点是,通过改变碱基的 pK 或氧化剂的还原电位 (E°),可以独立地改变 MS-CPET 驱动力。来自任一来源的 ΔG°的变化对 MS-CPET 速率常数有相同的影响,ln(k) 与 ln(K) 的组合 Brønsted 图呈线性,斜率为 0.46。这些结果表明,协同同步机制,其中 CPET 过程的质子和电子转移组件对速率常数做出相等的贡献。与 Brønsted 相关性的唯一例外是具有空间位阻吡啶的反应,其显然阻碍了有利于 MS-CPET 的质子供体和受体的紧密接近。这些三组分反应与 TEMPOH 的相关 HAT 反应,即 2,4,6-三-叔丁基苯氧自由基进行了比较。在相同驱动力下,TEMPOH 的 MS-CPET 和 HAT 氧化反应具有相似的速率常数。虽然这是一个不完美的比较,但数据表明,质子和电子分离到不同的试剂不会显著抑制质子耦合电子转移过程。