Yan Danhua, Topsakal Mehmet, Selcuk Sencer, Lyons John L, Zhang Wenrui, Wu Qiyuan, Waluyo Iradwikanari, Stavitski Eli, Attenkofer Klaus, Yoo Shinjae, Hybertsen Mark S, Lu Deyu, Stacchiola Dario J, Liu Mingzhao
Center for Computational Materials Science , Naval Research Laboratory , Washington , D.C. 20375 , United States.
Department of Materials Science and Chemical Engineering , Stony Brook University , Stony Brook , New York 11794 , United States.
Nano Lett. 2019 Jun 12;19(6):3457-3463. doi: 10.1021/acs.nanolett.8b04888. Epub 2019 May 7.
Due to its chemical stability, titania (TiO) thin films increasingly have significant impact when applied as passivation layers. However, optimization of growth conditions, key to achieving essential film quality and effectiveness, is challenging in the few-nanometers thickness regime. Furthermore, the atomic-scale structure of the nominally amorphous titania coating layers, particularly when applied to nanostructured supports, is difficult to probe. In this Letter, the quality of titania layers grown on ZnO nanowires is optimized using specific strategies for processing of the nanowire cores prior to titania coating. The best approach, low-pressure O plasma treatment, results in significantly more-uniform titania films and a conformal coating. Characterization using X-ray absorption near edge structure (XANES) reveals the titania layer to be highly amorphous, with features in the Ti spectra significantly different from those observed for bulk TiO polymorphs. Analysis based on first-principles calculations suggests that the titania shell contains a substantial fraction of under-coordinated Ti ions. The best match to the experimental XANES spectrum is achieved with a "glassy" TiO model that contains ∼50% of under-coordinated Ti ions, in contrast to bulk crystalline TiO that only contains 6-coordinated Ti ions in octahedral sites.
由于其化学稳定性,二氧化钛(TiO)薄膜在用作钝化层时越来越具有重要影响。然而,在几纳米厚度范围内,生长条件的优化(这是实现基本薄膜质量和有效性的关键)具有挑战性。此外,名义上非晶态的二氧化钛涂层的原子尺度结构,特别是当应用于纳米结构载体时,难以探测。在本信函中,通过在二氧化钛涂层之前对纳米线芯进行特定处理策略,优化了在氧化锌纳米线上生长的二氧化钛层的质量。最佳方法,即低压氧等离子体处理,可产生显著更均匀的二氧化钛薄膜和保形涂层。使用X射线吸收近边结构(XANES)进行表征表明,二氧化钛层高度非晶,钛光谱中的特征与块状TiO多晶型物中观察到的特征有显著差异。基于第一性原理计算的分析表明,二氧化钛壳层包含相当一部分配位不足的钛离子。与仅在八面体位置包含6配位钛离子的块状结晶TiO相比,使用包含约50%配位不足钛离子的“玻璃态”TiO模型实现了与实验XANES光谱的最佳匹配。