Sulman Aleksandrina M, Matveeva Valentina G, Bronstein Lyudmila M
Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia.
Regional Technological Centre, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia.
Nanomaterials (Basel). 2022 Oct 27;12(21):3796. doi: 10.3390/nano12213796.
Nanobiocatalysts, i.e., enzymes immobilized on nanostructured supports, received considerable attention because they are potential remedies to overcome shortcomings of traditional biocatalysts, such as low efficiency of mass transfer, instability during catalytic reactions, and possible deactivation. In this short review, we will analyze major aspects of immobilization of cellulase-an enzyme for cellulosic biomass waste processing-on nanostructured supports. Such supports provide high surface areas, increased enzyme loading, and a beneficial environment to enhance cellulase performance and its stability, leading to nanobiocatalysts for obtaining biofuels and value-added chemicals. Here, we will discuss such nanostructured supports as carbon nanotubes, polymer nanoparticles (NPs), nanohydrogels, nanofibers, silica NPs, hierarchical porous materials, magnetic NPs and their nanohybrids, based on publications of the last five years. The use of magnetic NPs is especially favorable due to easy separation and the nanobiocatalyst recovery for a repeated use. This review will discuss methods for cellulase immobilization, morphology of nanostructured supports, multienzyme systems as well as factors influencing the enzyme activity to achieve the highest conversion of cellulosic biowaste into fermentable sugars. We believe this review will allow for an enhanced understanding of such nanobiocatalysts and processes, allowing for the best solutions to major problems of sustainable biorefinery.
纳米生物催化剂,即固定在纳米结构载体上的酶,受到了广泛关注,因为它们是克服传统生物催化剂缺点的潜在解决方案,例如传质效率低、催化反应过程中的不稳定性以及可能的失活。在这篇简短的综述中,我们将分析纤维素酶(一种用于处理纤维素生物质废物的酶)固定在纳米结构载体上的主要方面。这些载体提供了高表面积、增加的酶负载量以及有利于提高纤维素酶性能及其稳定性的环境,从而产生用于获得生物燃料和增值化学品的纳米生物催化剂。在此,我们将根据过去五年的出版物,讨论诸如碳纳米管、聚合物纳米颗粒(NPs)、纳米水凝胶、纳米纤维、二氧化硅 NPs、分级多孔材料、磁性 NPs 及其纳米杂化物等纳米结构载体。由于易于分离和纳米生物催化剂回收以便重复使用,磁性 NPs 的使用特别有利。这篇综述将讨论纤维素酶固定化方法、纳米结构载体的形态、多酶系统以及影响酶活性的因素,以实现纤维素生物废物向可发酵糖的最高转化率。我们相信这篇综述将有助于增强对这类纳米生物催化剂和过程的理解,从而为可持续生物精炼的主要问题提供最佳解决方案。